期刊文献+

水热法制备氧化锌阵列及其形貌控制 被引量:17

Hydrothermal Synthesis of ZnO Nanorod Arrays and Their Morphology Control
在线阅读 下载PDF
导出
摘要 低温条件下,采用水热法,通过控制前驱溶液的pH值,在预先镀有ZnO纳米膜的导电玻璃衬底上制备了形貌各异的ZnO阵列,用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和紫外-可见分光光度计等分析手段对ZnO纳米棒的结构和形貌进行了表征.同时还对不同形貌阵列的形成机理进行探讨.结果表明,所制ZnO纳米棒为单晶,沿c轴择优生长.在pH值为10.5左右时,能得到取向性好、直径均匀(d-80nm)的ZnO纳米棒阵列.光学测试表明,在可见光区透光度超过80%,禁带宽度约为3.25eV. By using the hydrothermal method, the ZnO nanorod arrays with different morphologies were synthesized on ZnO nanoparticle-coated transparent conductivity glasses (TCO) at low temperatures by controlling the pH value of precursory solutions. The ZnO nanorod arrays were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and ultraviolet-visible spectrophotometer (UV-Vis). Fhrthermore, the mechanism was primary discussed. The results show that the ZnO nanorod is a single crystal and it grows along c axis. When the pH value is about 10.5, the array is well-aligned and the diameter of the nanorod is uniform. Optical characterization shows that the optical transmittance of the film is higher than 80% in the visible wavelength and its band gap is about 3.25eV.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2007年第3期403-406,共4页 Journal of Inorganic Materials
基金 武汉市重大科技攻关项目之纳米专项(20041003068-09) 教育部留学回国人员启动基金
关键词 水热法 氧化锌阵列 PH值 形貌 hydrothermal ZnO array pH value morphology
  • 相关文献

参考文献21

  • 1Mahalinggam T,John V S,Sebastian P J.Mater.Res.Bull.,2003,38:269-277.
  • 2Ismail B,Abaab M A,Rezig B.Thin Solid Films,2001,383:92-94.
  • 3Huang M H,Mao S,Feick H,et al.Science,2001,292:1897-1899.
  • 4Chan H B,Aksyuk V A,KleimanR N,et al.Science,2001,291:1941-1944.
  • 5Law M,Greene L E,Johnson J C,et al.Nature Material,2005,4:455-459.
  • 6Baxter J B,Aydil E S.Appl.Phys.Lett.,2005,86:053114.
  • 7Gao Y F,Nagai M.Langmuir,2006,22:3936-3940.
  • 8Huang M H,Wu Y,Feick H,et al.Advance Material,2001,13:113-116.
  • 9He J H,Hsu J H,Wang C H,et al.J.Phys.Chem.B,2006,110:50-53.
  • 10Kar S,Pal B N,Chaudhuri S,et al.J.Phys.Chem.B,2006,110:4605-4611.

二级参考文献20

  • 1Look D C. Mater. Sci. Eng. B, 2001, 80(1-3): 383-387.
  • 2Govender K, Boyle S, David P, O'Brien, et al. Adv. Mater., 2002, 14(17): 1221-1224.
  • 3Saito N, Haneda H, Sekiguchi T, et al. Adv. Mater., 2002, 14(6): 418.
  • 4Liang S, Sheng H, Liu Y, et al. J. Cryst. Growth, 2001, 225(2-4): 110.
  • 5Lee J Y,Choi Y S, Kim J H, et al. Thin Solid Films, 2002, 403: 533.
  • 6Golego N, Studenikin S A, Cocivera M. J. Electrochem. Soc., 2000, 147(4): 1592.
  • 7Rensmo H, Keis K, Lindstrom H. J. Phys. Chem., 1997, 101(14):2598
  • 8Keis K, Vayssieres L, Lindquist S-E, et al. Nanostruct. Mater., 1999, 12(1): 487.
  • 9Ham H, Shen G Z, Cho J H, et al. Chem. Phys. Lett., 2005, 404(1-3): 69-73.
  • 10Wu J J, Liu S C. Adv. Mater., 2002, 14(3): 215-218.

共引文献28

同被引文献243

引证文献17

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部