期刊文献+

强磁场下共沉淀-相转化法制备纳米钴铁氧体颗粒 被引量:7

SYNTHESIS OF COBALT FERRITE NANOPARTICLES IN HIGH STATIC MAGNETIC FIELD BY COPRECIPITA-TION-PHASE TRANSFORMATION WAY
在线阅读 下载PDF
导出
摘要 在强磁场下采用共沉淀-相转化法制备出了纳米级的钴铁氧体颗粒;通过SEM,XRD和VSM等分析手段,考察了磁感应强度对纳米钴铁氧体形貌及性能的影响规律.结果表明:无磁场及磁感应强度小于2 T时,纳米钴铁氧体颗粒为球形;当磁感应强度大于、等于4 T时,棒状纳米钴铁氧体开始形成.随着磁感应强度的增大,棒状纳米颗粒数量增加,纳米钴铁氧体的晶化程度提高,磁性能(Mr,Ms,Mr/Ms)也大幅度提高。与无磁场相比, 10 T时制备的纳米钴铁氧体颗粒的剩余磁化强度Mr增加近15倍,饱和磁化强度Ms提高约1.44倍.从磁聚合定向生长和临界磁畴角度分析了强磁场影响共沉淀-相转化法制备的纳米钴铁氧体的形貌、晶化程度及磁性变化的机理. Cobalt ferrite nanoparticles were synthesized in high static magnetic field by coprecipitation-phase transformation way, and the influences of magnetic flux density (MFD) on the shape and properties of the nanoparticles are studied through SEM, XRD and VSM. It was shown that when there was no magnetic field or MFD was lower than 2 T the spheric nanoparticles are obtained, and when MFD was equal to or above 4 T the nanorods appear. With the increase of MFD, much nanorods were obtained, and the crystallinity of cobalt ferrite became better, also the magnetic properties such as remanence magnetism (Mr), saturation magnetism (Ms) and squareness ratio (Mr/Ms) were increased remarkably. The Mr value of cobalt ferrite prepared in 10 T magnetic field was 15 times to that without magnetic field, and the Ms was elevated by 1.44 times. Based on the theory of magnetic aggregation and critical magnetic domain, the mechanism of how the high static magnetic field affected the shape, crystallinity degree and magnetic properties of the prepared cobalt ferrite was discussed.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第5期529-533,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金项目50404018 全国优秀博士学位论文作者基金项目200235 上海市科委纳米专项基金项目0252nm048资助
关键词 钴铁氧体 纳米 强磁场 共沉淀 cobalt ferrite, nanorode, high static magnetic field, coprecipitation
  • 相关文献

参考文献14

  • 1周彪,程福祥,廖春生,严纯华,陈良尧,赵海滨.CoFe2—xMnxO4纳米晶薄膜的结构、磁性及磁光效应研究[J].化学学报,2001,59(4):528-532. 被引量:5
  • 2Sandu I,Presmanes L,Alphonse P,Taihades P.Thin Solid Films,2006;495:130
  • 3de Vicente J,Delgado A V,Plaza R C,Duran J D G,Gonzalez-Caballero F.Langmuir,2000;16:7954
  • 4Congiu F,Concas G,Ennas G,Falqui A,Fiorani D,Marongiu G,Marras S,Spano G,Testa A M.J Magn Magn Mater,2004;272-276:1561
  • 5Zhang H Y,Gu B X,Zhai H R,Lu M,Huang H B.J Magn Magn Mater,1995;140-144:699
  • 6邵海成,戴红莲,黄健,黄福龙,李世普.化学共沉淀法合成CoFe_2O_4纳米颗粒及其磁性能[J].硅酸盐学报,2005,33(8):959-962. 被引量:25
  • 7Rondinone A J,Samia A C S,Zhang Z J.Appl Phys Lett,2000;76:3624
  • 8Li S,John V T,O'Connor C,Harris V,Carpenter E.J Appl Phys,2000;87:6223
  • 9Tamura H,Matijevic E.J Colloid Interface Sci,1982;90:100
  • 10Chinnasamy C N,Senoue M,Jeyadevan B,Perales-Perez O,Shinoda K,Tohji K.J Colloid Interface Sci,2003;263:80

二级参考文献17

  • 1Cheng F X,J Appl Phys,1999年,85卷,2782页
  • 2Peng Z Y,Thin Solid Films,1996年,286卷,270页
  • 3Xiao J M,Theoretical Applied Researches Rare Earths China(In Chinese),1992年,283页
  • 4Tang Z X,Phys Rev Lett,1991年,67卷,3602页
  • 5Yan C H,J Appl Phys,1988年,84卷,5703页
  • 6DORMAN J L, FIORANI D. Nanophase magnetic materials: size and interaction effects on static and dynamical properties of fine particles[J]. J Magn Magn Mater, 1995, 140-144:415-418.
  • 7POPPIJEWELL J. SAKHNINI L. The dependence of thephysical and magnetic properties of magnetic fluids on particle size[J]. J Magn Magn Mater, 1995, 149: 72-78.
  • 8PENNINGA I, DE WAARD H, MOSKOWITZ B M. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field[J]. J Magn Magn Mater, 1995,149:279-286.
  • 9KODAMA R H. Magnetic nanoparticles[J]. J Magn Magn Mater, 1999, 200: 359-372.
  • 10PILENI M P, MOUMEN N, VEILLET P. Controlled preparation of nanosize cobalt ferrite magnetic particles[J]. J Magn Magn Mater, 1995, 149: 67-71.

共引文献27

同被引文献97

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部