期刊文献+

基于内角余弦和的三角形正则度评定与网格优化 被引量:9

Triangle Regularity Measurement Based on Cosine Sum of Inner Angles and Mesh Optimization
在线阅读 下载PDF
导出
摘要 三角网格模型的质量对有限元分析等工程应用具有重要影响,而三角形的正则度是决定网格质量的主要因素。本文系统提出了基于内角余弦和的三角形正则度评定理论,并应用于三角网格优化中,通过对正则度低的三角形进行边折叠与边交换操作,有效去除了网格中的狭长三角形而使网格质量得以提高。结果证明本算法简捷高效,具有较高实用价值。 The quality of triangular mesh model has important influence on such engineering applications as FEM analysis, and the regularity of a triangle is the main factor that determines the quality of a mesh. We put forward a triangle regularity measurement theory based on the cosine sum of inner angles and applied it to triangle mesh optimization. Applying edge collapse and edge swap operations to triangles with low regularity, we removed long and narrow triangles from meshes, thus the mesh quality is improved. Application results show that the algorithm is efficient and practical.
出处 《机械科学与技术》 CSCD 北大核心 2007年第4期420-423,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家863计划项目(2005AA420240)资助
关键词 三角网格优化 三角形正则度 边折叠 边交换 triangular mesh optimization triangle regularity edge collapse edge swap
  • 相关文献

参考文献7

  • 1Garland M,Heckbert P S.Surface simplification using error metrics[A].In:ACM Siggraph[C],Los Angeles:ACM Press,1997:209 - 216.
  • 2Ronfard R,Rossignac J.Full-range approximation of triangulated polyhedza[J].Computer Graphics Forum,1996,15 (3).
  • 3Hoppe H,DeRose T,Duchamp T,et al.Mesh optimization[A].In:ACM Siggraph[C],Anaheim,California:ACM Press,1993.
  • 4Hamann B.A data reduction scheme for triangulated surfaces[J].Computer Aided Geometric Design,1994,11 (3):197 - 214.
  • 5Gueziec A.Surface Simplification Inside a Tolerance Volume,RC 20440[R].Yorktown Heights,NY 10598:IBM Research,1996.
  • 6张必强,邢渊,阮雪榆.基于特征保持和三角形优化的网格模型简化[J].上海交通大学学报,2004,38(8):1373-1377. 被引量:18
  • 7李桂清,马维银,鲍虎军.带尖锐特征的Loop细分曲面拟合系统[J].计算机辅助设计与图形学学报,2005,17(6):1179-1185. 被引量:22

二级参考文献33

  • 1Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization[A]. Cunningham S SIGGRAPH'93[C]. Anaheim: ACM Press, 1993. 19-26.
  • 2Gueziec A. Surface simplification inside a tolerance volume[R]. New York: IBM Research Division T, 1997.
  • 3Garland M, Heckbert P S. Surface simplification using error metrics[A]. Oween G S SIGGRAPH'97[C]. Los Angeles: ACM Press, 1997. 209-216.
  • 4Garland M, Heckbert P S. Simplifying surfaces with color and texture using quadric error metrics[A]. IEEE Computer Society Proceedings of Visualization'98[C]. North Carolina: IEEE Computer Society Press, 1998. 263-269.
  • 5Garland M. Quadric-based polygonal surface simplification[D]. Pittsburgh: Carnegie Mellon University, 1999.
  • 6Hoppe H, DeRose T, Duchamp T, et al. Piecewise smooth surface reconstruction[A]. Andrew Glassner SIGGRAPH'94[C]. Orlando: ACM Press, 1994. 295-302.
  • 7Halstead Mark, Kass Michael, deRose Tony. Efficient, fair interpolation using Catmull-Clark surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, California, 1993. 35~44
  • 8Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computed-Aided Design,1978, 10(6): 350~355
  • 9Nasri A H. Curve interpolation in recursively generated B-spline surfaces over arbitrarily topology [J]. Computer Aided Geometric Design, 1997, 14(1): 13~30
  • 10Nasri A H, Abbas A. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints [J]. Computer & Graphics, 2002, 26(3): 393~400

共引文献38

同被引文献88

引证文献9

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部