期刊文献+

基于动态惯性因子的PSO算法的研究 被引量:15

A Particle Swarm Optimization Algorithm Based on Dynamic Intertia Weight
在线阅读 下载PDF
导出
摘要 标准粒子群算法是一种有效的寻找函数极值的演化计算方法,它简便易行,收敛速度快。但算法也存在收敛精度不高,易陷入局部极值点的缺点。针对这些缺点,在原有算法的基础上,提出一种动态改变惯性因子的粒子群优化算法(DCW-PSO),使得粒子在迭代过程中惯性因子随粒子进化度和聚合度的变化而改变。文中通过对测试函数的仿真实验,并与自适应改变惯性因子的粒子群算法(ACWPSO)以及标准粒子群算法比较,其结果表明这种改进的粒子群算法在性能上明显优于这两种粒子群算法。 The normal PSO algorithm is a validated evolutionary computation way of searching the extremum of function , which is simple in application and quick in convergence , but low in precision and easy in premature convergence. Because of the limitation , a dynamically changing inertia weight PSO algorithm is proposed based on the normal PSO algorithm . The inertia weight is changed in every loop according to the swarm evolution degree and aggregation degree factor . Compared with ACWPSO and the normal PSO , the optimization results of testing function show that the performance of the DCWPSO algorithm is more excellent.
出处 《计算机仿真》 CSCD 2007年第5期154-157,共4页 Computer Simulation
基金 江苏省自然科学基金项目(BK2005012)
关键词 优化算法 动态惯性因子 进化度 聚合度 Optimization arithmetic Dynamical intera weight factor Evolution degree Aggregation degree
  • 相关文献

参考文献8

二级参考文献54

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献463

同被引文献153

引证文献15

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部