期刊文献+

一种基于进化策略的图像分割方法

An Image Segmentation Approach Based on Evolution Strategies
在线阅读 下载PDF
导出
摘要 文中提出一种基于进化策略求解分割阈值的方法,并在方法中引入了部分个体的交叉和个体的年龄参数,以进一步模拟自然界的进化过程,从而改善了整个方法的计算效率。对使用最大类间的方差准则和最大熵准则的实验结果表明,这种方法能够找到较优的分割阈值,可以方便地实现对图像的分割。 The image segmentation is a major aspect in image processing, it will produce influences on the image analysis and object recognition. The thresholding segmentation is one of image segmentation methods whose task is to search for the optimal threshold used by segmentation. In this paper, an image segmentation approach using evolution strategies technique is presented. The evolution strategies use mainly the selection and mutation operations to realize the evolutions of populations. In order to improve the efficiency of the approach, the crossover operations among a part of individuals in population and the age parameter of an individual are introduced into the basic evolution strategies. Some experimental results show the proposed approach can get the near optimal threshold being used to image segmentation.
出处 《激光与红外》 CAS CSCD 北大核心 2007年第6期583-586,共4页 Laser & Infrared
基金 国家自然科学基金(60006002) 广东省教育厅自然科学研究项目(02019)资助
关键词 图像处理 图像分割 进化算法 进化策略 image segmentation thresholding segmentation evolutionary algorithms evolution strategies
  • 相关文献

参考文献11

  • 1T Akhlaghian,N Golshah,M Alfred.Scalable multiresolution color image segmentation[J].Signal Processing,2006,86(7):1670-1687.
  • 2X Yong,F Dagan,Z Rongchun,et al.Learning-based algorithm selection for image segmentation[J].Pattern Recognition Letters,2005,26(8):1059-1068.
  • 3S Mahmoodi,B Sharif.Nonlinear optimisation method for image segmentation and noise reduction using geometrical intrinsic properties[J].Image and Vision Computing,2006,24(2):202-209.
  • 4N Mehmet,Z Dokur,A Tamer.Segmentation of remote-sensing images by incremental neural network[J].Pattern Recognition Letters,2005,26(8):1096-1104.
  • 5J Tianzi,Y Faguo,F Yong,et al.A parallel genetic algorithm for cell image segmentation[J].Electronic Notes in Theoretical Computer Science,2001,46:1-11.
  • 6V Oduguwa,A Tiwari,R Roy.Evolutionary computing in manufacturing industry:an overview of recent applications[J].Applied Soft Computing Jourmal,2005,5(3):281-299.
  • 7K M Young,L C Oh.An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies[J].Control Engineering Practice,2006,14(2):137-147.
  • 8E M Montes,C A Coello.An improved diversity mechanism for solving constrained optimization problems using a multimembered evolution strategy[J].Lecture Notes in Computer Science,2004,3102:700-712.
  • 9林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:323
  • 10乔双,宋建中,胡硕.基于改进遗传算法的图像分割方法[J].微型机与应用,2004,23(3):50-51. 被引量:5

二级参考文献20

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 3[3]S Kirkpatick, C D Gelatt and M P Vecchi. Optimization by Simulated Annealing[J]. Science,1983,220: 671~680.
  • 4[4]J J Grefenstette. Incorporating Problem Specific Knowledge into Genetic Algorithms[M].Davis L Ed. Genetic Algorithms and Simulated Annealing, Pitman, 1987,42~60.
  • 5[5]H Chen, N S Flann. Parallel Simulated Annealing and Genetic Algorithms : A Space of Hybrid Methods[J]. Paralled Problem Solving from Nature 3.Springer-Verlag,1994,428~438.
  • 6[7]J Kittler, J Illingworth. Minimnm error thresholding[J].Pattern Recognition,1986,8(1):41~47.
  • 7Nikhil R P,Sanker K P.A Review on Image Segmentation Techniques.Pattern Recognition, 1993 ;26(9).
  • 8章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 9郑宏,潘励.基于遗传算法的图像阈值的自动选取[J].中国图象图形学报(A辑),1999,4(4):327-330. 被引量:38
  • 10罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:234

共引文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部