摘要
提出一种采用结构保留的线性化微分代数方程(LDAE)模型进行电力系统次同步振荡小扰动特征根分析的方法。该模型直接由电力系统各元件的LDAE模型出发,根据网络的拓扑结构将元件模型快速组合成模块化的全系统模型。保留所有代数变量和系统结构,推导基于该LDAE模型的广义特征根和特征向量计算公式,进而进行特征根灵敏度分析。由于采用模块化建模而且不需要消去元件的代数变量,有利于将LDAE建模方法进一步推广用于柔性交直流联合电力系统的次同步振荡(SSO)建模和分析。通过对IEEE关于SSO的第1标准模型和双机无穷大母线系统的计算机仿真分析,证实了所建立模型和相应分析方法的正确性和有效性。
A structure-preserving LDAE(Linearized Differential and Algebraic Equation)model is proposed for eigen analysis of turbine-generator SSO(SubSynchronous Oscillation). The LDAE models are formed first for various power system components,the modularized system model is then quickly established according to network topology,based on which and with all algebraic variables and system structure preserved,the generalized formula for eigenvalue and eigenvector calculation are deduced for eigenvalue sensitivity analysis. As it is modularized and the algebraic variables of components are preserved,the method of LDAE- based modeling can be introduced to SSO study of power systems with HVDC and/or FACTS devices. Its effectiveness is verified by the simulative analysis for the IEEE first benchmark model and a two-machine infinite-bus system.
出处
《电力自动化设备》
EI
CSCD
北大核心
2007年第6期1-7,共7页
Electric Power Automation Equipment
基金
国家重点基础研究专项经费项目(2004CB217900)
国家自然科学基金项目(50337010)
高等学校博士学科点专项科研基金资助课题(20060294019)
河海大学科技创新基金(2013/406099)~~