期刊文献+

一种基于粗糙集构造决策树的改进算法 被引量:2

An Improved Algorithm for Constructing Decision Tree Based on Rough Sets
在线阅读 下载PDF
导出
摘要 基于变精度粗糙集模型,对文献[3]提出的生成决策树方法进行改进,把变精度加权平均粗糙度作为属性选择标准,提出一种构造决策树新算法。新算法用变精度近似精度来代替近似精度,能有效地克服噪声数据在构造决策树过程中对刻画精度的影响,使生成的决策树复杂性降低,泛化能力更强。 Based on Variable Precision Rough Sets Model, the decision tree reducing approach presented in Reference [3] is improved. The article presents a new algorithm for constructing decision tree with variable precision weighted mean roughness as the criteria for selecting attribute. The new algorithm effectively overcomes the influence of the noise data in structuring decision tree, reduces the complexity of decision tree and strengthens its extensive ability.
出处 《广西科学院学报》 2007年第2期76-79,共4页 Journal of Guangxi Academy of Sciences
关键词 决策树 粗糙集 变精度 decision tree, rough sets, variable precision
  • 相关文献

参考文献10

二级参考文献53

  • 1菅利荣,达庆利,陈伟达.Variable Precision Rough Set and a Fuzzy Measure of Knowledge Based on Variable Precision Rough Set[J].Journal of Southeast University(English Edition),2002,18(4):351-355. 被引量:2
  • 2蒋芸,李战怀,张强,刘扬.一种基于粗糙集构造决策树的新方法[J].计算机应用,2004,24(8):21-23. 被引量:30
  • 3洪家荣,丁明峰,李星原,王丽薇.一种新的决策树归纳学习算法[J].计算机学报,1995,18(6):470-474. 被引量:92
  • 4曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 5[1]Quinlan JR. C4.5: Programs for Machine Learning [M]. San Mateo, CA: Morgan Kaufmann, 1993.
  • 6[2]Liu B, Hsu W, Ma Y. Intergrating Classification and Association Rule Mining [A]. Proc KDD[C], 1998.
  • 7[3]Buntine WL, Weigend AS. Computing Second Derivatives in Feed-forward Networks: A Review [J]. IEEE Transactions on Neural Networks, 1991,5(3):480-488.
  • 8[4]Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines [M]. Cambridge Press, 2000. 1-18.
  • 9[5]Pawlak ZW. Rough Sets [J]. International Journal of Information and Computer Science, 1982,11(5):341-356.
  • 10[6]Pawlak ZW. Rough Sets and Intelligent Data Analysis [J]. Information Sciences, 2002,147(1-4):1-12.

共引文献279

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部