期刊文献+

图像多尺度统计模型综述 被引量:4

A Review of Multiscale Statistical Image Models
在线阅读 下载PDF
导出
摘要 基于小波变换的图像处理方法是目前的主流方法,而对图像特征的多尺度统计建模则是图像压缩、去噪、分割、纹理分析与合成等统计应用的关键问题。本文综述了图像的多尺度统计模型,包括边缘分布模型以及层内、层间和混合相关模型,分析了各模型的优缺点,给出了对各种相关模型捕捉系数间相关性能力的归一化量测。最后,简单介绍了基于多尺度几何分析的统计图像模型,并对多尺度统计建模的前景进行了展望。 The algorithms based on wavelet transform have been very popular in image processing applications such as image compression, denoising, segmentation, texture analysis and synthesis. Multiscale statistical models for image characteristic are the key problems for these applications. This paper reviewed the statistical models for images in wavelet domain. Firstly, the marginal models for non-Gaussian distribution of image wavelet coefficients were studied, then the dependency models including interscale, intrascale and composite dependencies were analyzed, and the paper indicated the advantages and disadvantages of the models and gave normalized measures for the abilities of different dependency models to capture the dependencies between coefficients. At last, image statistical models based on multiscale geometric analysis were introduced in brief, and the possible future work is pointed out.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第6期961-969,共9页 Journal of Image and Graphics
关键词 小波 多尺度统计模型 非高斯 相关模型 互信息 多尺度几何分析 wavelet, multiscale statistical model, non-Gaussian, dependency model, mutual information, multiscale geometric analysis
  • 相关文献

参考文献52

  • 1Vidakovic B,Lozoya C B.On time-dependent wavelet denoising[J].IEEE Transactions on Signal Processing,1998,46 (9):2549 ~2554.
  • 2Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J].IEEE Transactions on Signal Processing,1993,41 (12):3445 ~ 3462.
  • 3Donoho D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613 ~627.
  • 4Choi H,Baraniuk R G.Multiscale image segmentation using waveletdomain hidden Markov models[J].IEEE Transactions on Image Processing,2001,10(9):1309 ~ 1321.
  • 5Choi H,Hendricks B,Baraniuk R G.Analysis of texture segmentation using wavelet-domain hidden Markov trees[A].In:Proceedings of 33rd Asilomar Conference on Signals Systems and Computers[C],Pacific Grove,CA,1999,2:1287 ~ 1291.
  • 6Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (7):674 ~ 693
  • 7Simoncelli E P,Adelson E H.Noise removal via Bayesian wavelet coring[A].In:Proceedings of 3 rd International Conference on Image Processing[C],Lausanne,Switzerland,1996,1:379 ~ 382.
  • 8Bouman C,Sauer K.A generalized Gaussian image model for edge preserving MAP estimation[J].IEEE Transactions on Image Processing,1993,2 (3):296 ~ 310.
  • 9Simoncelli E P.Modeling the joint statistics of images in the wavelet domain[A].In:Proceedings of SPIE 44th Annual Meeting[C],Denver,1999,3813:188 ~ 195.
  • 10Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing,1998,46 (4):886 ~ 902.

同被引文献46

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部