期刊文献+

润扬悬索桥动力特性的特征提取与重构

Feature Extraction and Reconstruction of Runyang Suspension Bridge Dynamic Characteristics
在线阅读 下载PDF
导出
摘要 当前大型桥梁在线健康监测与损伤识别中主要采用基于结构模态参数的方法,该类方法存在固有缺陷。结构的频响函数包含了更丰富的结构动力信息,但数据量大、冗余度高,不利于工程应用。本文采用主元分析方法,对结构频响函数进行空间变换,得到的主元向量可在最小均方意义下提取数据的主要分布特征,根据主元的累积贡献率,可选取较少的主元可靠重构结构的频响函数,从而使基于频响函数的在线监测在大跨桥梁结构的应用更为可行。具体针对润扬长江大桥,结合实时监测系统的测点布置,对南汊悬索桥进行了动力特性分析,根据降维后的较少主元对结构频响进行重构。误差分析结果表明,采用27或20个主元能提取润扬悬索桥的主要动力特征,重构误差的均方值分别为0.0097和0.0134。 The structural health monitoring and damage detection for long span bridge structure are mainly based on the modal analysis, and the method has inherent defects. Frequency response function (FRF) contains abundant structural dynamic characteristics, but the high redundancy and the huge data confine its application. The structural FRF is mapped into principal component space using principal component analysis, and a few principal components are selected to reconstruct the FRF based on the cumulated contribution. The dynamic charactersistics of Runyang suspension bridge are studied according to the real time monitoring system, and the FRF isreconstructed by a few principal components. Results show that 27 or 20 principal components can extract the dominating features of FRF, and the corresponding covariances of the reconstruction error are 0. 009 7 and 0. 013 4 respectively.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第3期403-406,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(50378017)资助项目 国家863计划(2006AA04Z416)资助项目 南航青年科研基金(Y0513-013)资助项目
关键词 健康监测 特征提取 主元分析 悬索桥 重构 health monitoring feature extraction principal component analysis suspension bridge re construction
  • 相关文献

参考文献12

  • 1Ko J M,Ni Y Q.Technology developments in structural health monitoring of large-scale bridges[J].Engineering Structures,2005,27(12):1715-1725.
  • 2Doebling S W,Farrar C R,Prime M B,et al.Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics:a literature review[R].LA13070-MS.New Mexico:Los Alamos,1996.
  • 3Salawu O S.Detection of structural damage through changes in frequency:a review[J].Engineering Structures,1997,19(9):718-723.
  • 4Limsamphancharoen N.Condition monitoring of structures by using ambient dynamic responses[D].Urbana,Illinois:Department of Civil and Environmental Engineering,University of Illinois at Urbana-Champaign,2003.
  • 5Perera R,Torres R.Structural damage detection via modal data with genetic algorithms[J].ASCE Journal of Structural Engineering,2006,132(9):1491-1501.
  • 6杨杰,李爱群,缪长青.BP神经网络在大跨斜拉桥的斜拉索损伤识别中的应用[J].土木工程学报,2006,39(5):72-77. 被引量:32
  • 7王谓季 张阿舟.结构振动特性对故障的敏感性与故障诊断[J].南京航空学院学报,1985,(4):80-90.
  • 8Peeters B,De Roeck G.Stochastic system identification for operational modal analysis:a review[J].Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,2001,123(4):659-667.
  • 9Yang Jie,Li Aiqun.PAF:the grope for integrated diagnosing method[C]//Proceedings of the third international conference on earthquake engineering.Nanjing:China Water Power Press,2004:654-656.
  • 10Tzeng D Y,Berns R S.A review of principal component analysis and its applications to color technology[J].Color Research and Application,2005,30(2):84-98.

二级参考文献10

  • 1Hagan M T,Howard B D,Mark B.Neural network design[M].USA,PWS Publishing Company,1996
  • 2Venkatasubramanian V,Chan K.A neural network methodology for process fault diagnosis[J].AIChE Journal,1989,35(12):1993-2002
  • 3Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computers & Structures,1992,42 (4):649-659
  • 4Kirkegaard P H,Rytter A.Use of neural networks for damage detection and location in a steel member[C]//Proc.of the3rd International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering,Edinburgh,1993
  • 5Anatharamn S,Johnson V T.Damage assessment of composite structures-A fuzzy logic integrated neural network approach[J].Computer & Structures,1995,57 (3):491-502
  • 6Elkordy M F,Chang K C,Lee G C.Application of neural networks in vibrational signature analysis[J].Journal of Engineering Mechanics,1994,120 (2):250-265
  • 7Nakamura M,Masri F,Anatassios G,et al.A method for nonparametric damage detection through the use of neural networks[J].Earthquake Engineering and Structural Dynamics,1998,27 (9):997-1010
  • 8Chen S S,Kim S.Neural-network-based signal monitoring in a smart structural system[C]//North American Conference on Smart Structures and Materials 1994:Smart Sensing,Processing and Instrumentation,1994:176-186
  • 9PandeyP C,Barai S V.Multilayer perceptron in damage detection of bridge structures[J].Computers & Structures,1995,54 (4):597-608
  • 10Russell S,Norvig P.Artificial Intelligence:A Modern Approach[M].Prentice Hall,1995

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部