期刊文献+

管内检测机器人在水平直管内运动的数值研究 被引量:5

Numerical study on movement of in-pipe inspection robot in horizontal straight pipeline
在线阅读 下载PDF
导出
摘要 采用计算流体力学和动网格技术,数值模拟了单节管内检测机器人在水平直管内从静止到匀速运动这一过程,得到了这一运动过程中机器人的运动规律。计算中将机器人作为运动边界,其受力由当前流场信息来获得,再根据受力来计算机器人的运动速度和前进距离,因边界运动而变化的计算区域根据新的边界条件用弹性变形和网格局部重构技术来更新。不同质量机器人在不同摩擦力下运动规律的计算结果表明,质量只影响机器人达到稳定运动的时间,而摩擦力会影响机器人的稳定运动速度和达到稳定运动的时间。计算结果与实验结果比较吻合,说明动网格技术模拟机器人的运动过程可以为机器人的外形设计、速度控制研究以及操作运行提供参考。 The movement of single-segment in-pipe inspection robot in a horizontal straight pipe was numerically simulated by the method of the computational fluid dynamics and the dynamic mesh technology, and the law governing the movement of the robot from its initially stationary state to the moving moment at a uniform speed was obtained through the simulation. The robot was regarded as a moving body during the computation, and the force on the robot was calculated from the current flow field, and moving velocity and the distance covered were calculated. The changing computational domain by the moving boundaries was updated by introducing the technology of spring deformation and local remeshing technology. The computation results of the movement of robots of different mass, which are imposed on with different friction, were given. The mass only influences the time that the robot needs to reach a steady state while the friction influences both its final steady velocity and time. The calculated result is in a good agreement with the experimental result. The numeric simulation of the movement of a robot by the technology of dynamic mesh can be regarded as a reference for the shape design, velocity control and operation of a robot.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期103-108,共6页 Journal of China University of Petroleum(Edition of Natural Science)
基金 总后勤部军需物资油料部资助项目(20040207)
关键词 管内机器人 动网格 不可压缩流体 计算流体力学 in-pipe robot dynamic mesh incompressible fluid computational fluid dynamics (CFD)
  • 相关文献

参考文献13

  • 1WEINGARTEN J S,CHAPMAN A J,WALKER W F.An analysis of the motion of PIGs through gas pipelines[J].Journal of Fluids Engineering,1984,106(12):374-379.
  • 2NGUYEN T T,YOO H R,RHO Y W,et al.Speed control of PIG using bypass flow in natural gas pipeline[C]//2001 IEEE ISIE 2001.Pusan:KOREA,c2001:863-868.
  • 3NGUYEN T T,KIM D K,RHO Y W,et al.Dynamic modeling and its analysis for PIG flow through curved seetion in natural gas pipeline[C]//Proceedings of 2001 IEEE International Symposium on Computational Intelligence Robotics and Automation.Banff,Alberta:Canada,c2001:492-497.
  • 4NGUYEN T T,KIM S B,YOO H R,et al.Modeling and simulation for PIG flow control in nature gas pipeline[J].KSME International Journal,2001,15(8):1 165-1 173.
  • 5NGUYEN T T,KIM S B,YOO H R,et al.Modeling and simulation for PIG with bypass flow control in nature gas pipeline[J].KSME International Journal,2001,15(9):1 302-1 310.
  • 6LIMA P C R,PETROBRAS S A,YEUNG H,et al.Modeling of pigging operations[R].SPE 56586,1999.
  • 7LIMA P C R,PETROBRAS S A,YEUNG H,et al.Modeling of transient two-phase flow operations and offshore pigging[R].SPE 49208,1998.
  • 8YEUNG H C,LIMA P C R.Modeling of PIG assisted production methods[C]//Proceedings of ETCE/OAME2000 Joint Conference.New Orieans:LA,c2000:677-683.
  • 9陶文铨.数值传热学[M].2版.西安:西安交通大学出版社,2004.
  • 10FARHAT C,DEGAND C,KOOBUS B,et al.Torsional springs for two-dimensional dynamic unstructured fluid meshs[J].Computer Methods in Applied Mechanics and Engineering,1998,163:231-245.

二级参考文献13

  • 1吴德红.含动边界自适应非结构网格生成及应用研究[硕士论文].南京理工大学,2000..
  • 2Uwe R, Rosemarie M. CFD-simulation of the flow through a fluidic element[J]. Aerospace Science Technology, 2000(4): 111-123
  • 3Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the-deforming-spatial-domain/space-time procedure: the concept and the preliminary numerical tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992,94:339-351
  • 4苗瑞生 居贤铭.火箭气体动力学[M].北京:国防工业出版社,1985..
  • 5[1]Mark A P,Eloret C,etc. A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications[R]. AIAA-2001-0716.
  • 6[2]Peter M H,Shreekant A. Method For Perturbing Multiblock Patched Grids In Aeroelastic And Design Optimization Applications[R]. AIAA-97-2038.
  • 7[3]Jones W T,Samareh-Abolhassani J. A Grid Generation System for Multi-Disciplinary Design Optimization[R]. AIAA-95-1689-CP.
  • 8[4]Robinson B A,Batina J T.Yang H T Y. Aeroelastic Analysis of Wings Using the Euler Equations with a Deforming Mesh[J]. Journal of Aircraft,1991,28(11):781-788.
  • 9[5]Reuther J,Alonso J,Jrimlinger M J,Jameson A. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers[R]. AIAA Paper 96-4045.
  • 10[6]Wong A,Tsai H,Cai J, etc. Unsteady Flow Calculations With A Multi-Block Moving Mesh Algorithm[R]. AIAA Paper 2000-1002.

共引文献86

同被引文献34

  • 1徐东光,董彦良,吴盛林,吴博,赵克定.液压驱动Stewart平台非线性自适应控制器设计[J].机械工程学报,2007,43(3):223-227. 被引量:8
  • 2张秀凤,尹勇,金一丞.规则波中船舶运动六自由度数学模型[J].交通运输工程学报,2007,7(3):40-43. 被引量:61
  • 3边宇枢,高志慧,贠超.6自由度水下机器人动力学分析与运动控制[J].机械工程学报,2007,43(7):87-92. 被引量:35
  • 4MERLET J-P. Parallel robots [ M ]. Netherlands : Kluwer Academic Publishers, 2000.
  • 5AGUINAGA Ruiz E, ZAVALA Rio A, SANTIBANEZ V, et al. Global trajectory tracking through static feedback for robot manipulators with bounded inputs [ J ]. IEEE Transactions on Control Systems Technology, 2009, 17 (4) : 934 -944.
  • 6PENG W, LIN Z, SU J. Computed torque control-based composite nonlinear feedback controller for robot manipulators with bounded torques [ J ]. lET Control Theory and Applications, 2009,3 (6) :701-711.
  • 7ZAVALA Rio A, SANTIBBANEZ V. Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs [ J ]. IEEE Transactions on Control Systems Technology, 2006, 14 (5) :958-965.
  • 8ABIDI K, XU J-X, SHE J-H. A discrete-time terminal sliding-mode control approach applied to a motion control problem[ J ]. IEEE Transactions on Industrial Electronics, 2009,56(9) :3619-3627.
  • 9DAVLIAKOS I, PAPADOPOULOS E. Model-based control of a 6-dof edectrohydraulic Stewart-gough platform [ J]. Mechanism and Machine Theory, 2008,43 ( 11 ) : 1385-1400.
  • 10ZAVALA Rio A, SANTIBBANEZ V. A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs [ J ]. IEEE Transactions on Robotics, 2007,23 (2) : 386- 391.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部