期刊文献+

基于Hash表的关联规则挖掘算法的改进 被引量:10

Improvement of Association Rules Mining Algorithm Based on Hash Table
在线阅读 下载PDF
导出
摘要 经典的Apriori算法在大项目集的挖掘过程中因为重复搜索导致效率低下。提出一种改进的Hash表结构应用于DHP算法中的项目集存放,定义新的Hash函数确定项目集的存放地址,并基于新的Hash表结构,以并行挖掘的方式优化关联规则算法的剪枝过程。实验结果表明,与Apriori算法相比,文中的方法可以更好地节省存储空间,提高挖掘效率。 With classical Apriori algorithm, mining large itemsets is inefficient because of repeated scanning. In this paper, develop an algorithm DHP with improved Hash table for efficient large itemset generation. The stored address of itemsets is determined by a new Hash function. Based on the new Hash table,can use parallel mining to improve pruning process in association rules algorithm. From the experiment results, the method in this paper can save more storing space and enhance mining efficiency compared with Apriori algorithm.
出处 《计算机技术与发展》 2007年第6期12-14,共3页 Computer Technology and Development
基金 国家科技攻关项目(2004BA811B06)
关键词 数据挖掘 关联规则 APRIORI算法 DHP算法 HASH表 data mining association rules Apriori algorithm DHP algorithm Hash table
  • 相关文献

参考文献6

  • 1Agrawal R,Imielinski T,Swami A.Database mining:a performance perspective[J].Knowledge and Data Engineering,IEEE Transactions,1993,5(6):914-925.
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[J].ACM SIGMOD Record,1993,22(2):207-216.
  • 3Park Jong Soo,Chen Ming-Syan,Yu P S.Using a Hash -Based Method with Transaction Trimming for Mining Association Rules[J].Knowledge and Data Engineering,IEEE Transactions,1997,9(5):813-825.
  • 4Holt J D,Chung S M.Efficient mining of association rules in text databases[C]//Proceedings of the eighth international conference on Information and knowledge management.[s.l.]:ACM Press,1999:234-242.
  • 5HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 6Dunham MH.数据挖掘教程[M].郭崇慧,田凤占,靳晓明译.北京:清华大学出版社,2005.

共引文献35

同被引文献55

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部