期刊文献+

一类具一阶奇性解的Hilbert核奇异积分方程

On a class singular integral equations with Hibert kernel having solutions with singularity of order one
在线阅读 下载PDF
导出
摘要 利用变换ζ=exp(i2z/a)重新求解了一类黎曼周期边值问题,在此基础上给出了希尔伯特核奇异积分特征方程的解和可解条件,得到了与经典方法形式不同但更为简洁的结果.同时提出了一类具一阶奇性解的希尔伯特核奇异积分方程,给出了解和可解条件表达式. First discussed a class of periodic Riemann boundary value problem by the mapping ζ= exp(2iz/a). Then on this base,the solution and solvable conditions of characteristic singular integral equation with Hilbert.kernel are given which possess clear geometric interpretation and are more simplified than classical results. Finally a class of singular Integral equations with Hilbert kernel havingsolutions with singularity of order one are discussed, the solution and solvable conditions are given.
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2007年第2期126-130,137,共6页 Journal of Hubei University:Natural Science
关键词 奇异积分方程 HILBERT核 一阶奇性解 singular integral equation Hilbert kernel solution with singularity or order one
  • 相关文献

参考文献6

  • 1路见可.关于Hilbert核奇异积分方程[J].数学进展,1965,(8):161-167.
  • 2ZhongShou-guo ChenJing-song.Solution with Singularity of Order One for Singular Integral Equation with Hilbert Kernal[J].Wuhan University Journal of Natural Sciences,2004,9(1):6-12. 被引量:6
  • 3路见可.沿曲线的积分方程,其解具一阶奇性.武汉大学学报:自然科学版,1964,(1):7-13.
  • 4杜金元.带Hibert核的奇异积分方程及相关联的一些正交多项式.武汉大学学报:自然科学版,1988,(2):17-34.
  • 5Du Jin-yuan.Some systems of orthogonal polynomial associated with singular integral equations[J].Acta Math Sci,1987,7(1):85-96.
  • 6Lu Jian-ke.Boundary value problems for analytic functions[M].Singapore:World Science Press,1993.

二级参考文献3

  • 1Lu Jian-ke.On Integral Equations Along Curve, the Solutions of Which have Singularities of Order One[].Journal of Wuhan University.1964
  • 2Lu Jian-ke,Zhang Gui-sheng.On Singular Integral Equations with Solutions Having Singularities of Order One[].Journal of Wuhan University.1997
  • 3Lu Jian-ke.On Singular Integral Equations with Hilbert Kernel[].Advances in Mathematics.1965

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部