摘要
利用变换ζ=exp(i2z/a)重新求解了一类黎曼周期边值问题,在此基础上给出了希尔伯特核奇异积分特征方程的解和可解条件,得到了与经典方法形式不同但更为简洁的结果.同时提出了一类具一阶奇性解的希尔伯特核奇异积分方程,给出了解和可解条件表达式.
First discussed a class of periodic Riemann boundary value problem by the mapping ζ= exp(2iz/a). Then on this base,the solution and solvable conditions of characteristic singular integral equation with Hilbert.kernel are given which possess clear geometric interpretation and are more simplified than classical results. Finally a class of singular Integral equations with Hilbert kernel havingsolutions with singularity of order one are discussed, the solution and solvable conditions are given.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2007年第2期126-130,137,共6页
Journal of Hubei University:Natural Science
关键词
奇异积分方程
HILBERT核
一阶奇性解
singular integral equation
Hilbert kernel
solution with singularity or order one