期刊文献+

基于视觉的低空跟踪系统 被引量:3

Vision-based low altitude tracking system
在线阅读 下载PDF
导出
摘要 构建了一个以无人飞行器为载体的基于视觉的低空跟踪系统。该系统由地面站和机载模块两部分组成,构建了机载自动跟踪与地面人工干预两个并联的控制回路;采用了基于灰度直方图的自适应容忍度多阈值分割算法,并在此基础上采用了基于双重子窗口的动态聚类目标提取方法;用目标的形心脱靶量作为云台的控制参数,根据目标的运动趋势对速度参数进行调整。系统通过用鼠标对监控视野中心的坐标替换目标的形心脱靶量实现机载自动跟踪和地面人工干预的平滑切换;保留不同照度下目标的灰度阈值,使得运动区域在阴影下也能被分割。经过2~3次的聚类迭代,较精确地计算出目标的形心位置,排除了干扰目标的影响,系统的处理速度达到15 frame/s。结果表明,上述算法和方法是可行的,系统具有较大的实用性。 A vision-based low altitude tracking system mounted on an unmanned aerial vehicle is established. The system is composed of ground station and on-board module, and constructed two parallel control loops: automatic tracking control loop and manual intervening control loop. The multi-threshold segmentation algorithm with adaptive tolerance based on gray-level histogram is presented,and a object dynamic clustering algorithm with double sub-windows is analyzed. The pan and tilt head are controlled based on the miss distance of the object centroid. The system can switch smoothly from one control loop to another as the miss distance is replaced by the coordinates of the mouse relative to the center of the monitor view. The motion is segmented even in the shade by several appended thresholds for varying illunination. The object centroid position is obtained correctly through 2~3 iterations in the process of dynamic clustering, and the disturbance of other objects is removed. The system can produce good tracking results at a frame rate of 15 frame/s. The results show that the algorithms and methods are available, and the system has a certain extent practicability.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第6期957-965,共9页 Optics and Precision Engineering
基金 上海市科学技术委员会国际合作项目(No.045107031) 教育部高等学校重点学科建设项目(No.Y0102) 上海市重点学科建设项目(No.BB67)
关键词 低空跟踪 并联控制回路 多阈值分割算法 双重子窗口 动态聚类 脱靶量 low altitude tracking parallel control loop multi-threshold segmentation algorithm^double sub-windows dynamic clustering miss distance
  • 相关文献

参考文献11

  • 1KONTITSIS M,VALAVANIS K P,TSOURVELOUDIS N.A UAV vision system for airborne surveillance[C].Proceedings of the 2004 IEEE International Conference on Robotics and Automation,New Orleans,USA:ICRA,2004.
  • 2HU W M,TAN T N,WANG L,et al..A survey on visual surveillance of object motion and behaviors[J].IEEE Transactions on System,Man,and Cybernetic-Part C:Applications and Reviews,2004,8(2):334-352.
  • 3SHUM H Y,HAN M,SZELISKI R.Interactive construction of 3D models from panoramic mosaics[C].Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Santa Barbara,CA:CVPR,1998.
  • 4TIAN T Y,TOMASI C,HEEGER D J.Comparison of approaches to egomotion computation[C].Proceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Francisco,CA:CVPR,1996.
  • 5Sonka M,Hlavac V,Boyle R.图像处理、分析与机器视觉(第二版)[M].北京:人民邮电出版社,2003.
  • 6王洪建,李志敏.基于视频图像的车辆流量实时检测系统[J].光学精密工程,2005,13(z1):222-226. 被引量:15
  • 7孙辉,赵红颖,熊经武,金宏.基于光流模型的图像运动估计方法[J].光学精密工程,2002,10(5):443-447. 被引量:27
  • 8朱明,鲁剑锋,胡硕.采用DSP的电视测量跟踪器的研制[J].光学精密工程,2005,13(z1):232-235. 被引量:15
  • 9张旭光,孙巍,韩广良,王延杰.一种弹孔自动识别算法的研究[J].光学精密工程,2005,13(6):747-753. 被引量:18
  • 10边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.224-227.

二级参考文献30

  • 1韩广良,顾海军,宋建中,董学志.基于实时序列图像复杂背景下运动目标的提取[J].吉林大学学报(信息科学版),2003,21(S1):7-11. 被引量:4
  • 2岳敏,欧阳玲,阙志宏.红外成像导引头图像稳定精度研究与优化设计[J].西北工业大学学报,1996,14(3):429-432. 被引量:1
  • 3[5]CUCCHIARA R.Image analysis and rule-based reasoning for a traffic monitoring system[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(2):119-130.
  • 4[7]LIPTON A,FUJIYOSHI H,PATIL R.Moving target classification and tracking from real-time video[C].In:Proc.IEEE Workshop on Applications of Computer Vision,Princeton,NJ,1998.8-14.
  • 5[8]KIM J B.Unsupervised moving object segmentation and recognition using clustering and a neural network[C].2002 IEEE,2002.1240-1245.
  • 6[9]ALBIOL A.Real-time high density people counter using morphological tools[J].IEEE Transactions on Intelligent Transportation Systems,2001,2(4):204-218.
  • 7[10]STAUFFER C,GRIMSON W.Adaptive background mixture models for real-time tracking[C].In:Proc.IEEE Conference on Computer Vision and Pattern Recognition,Fort Collins,Colorado,1999.246-252.
  • 8[12]MARTIN R F K.Using intrinsic images for shadow handling[C].The IEEE 5th International Conference on Intelligent Transportation Systems 3-6 September 2002,Singapore,2002.152-155.
  • 9[13]TAIB Z A.Massively parallel image processing system for intelligent transportation system spplications[C].1998 IEEE,1998.367-372.
  • 10[9]BARNEA D I,SILVERMAN H E.A class of algorithms for digital image registration[J].IEEE,1972,C-21(2):179-186.

共引文献124

同被引文献22

  • 1刘刚,苏秀琴,胡晓东,郝伟,杨小君.高速电视下基于自适应阈值的实时图像跟踪[J].光子学报,2005,34(8):1262-1265. 被引量:20
  • 2邹海荣,龚振邦,罗均.仿生眼的研究现状与发展趋势[J].机器人,2005,27(5):469-474. 被引量:18
  • 3潘梅森,荣秋生.基于SOFM神经网络的图像融合二值化方法[J].光学精密工程,2007,15(3):401-406. 被引量:19
  • 4邹海荣,龚振邦,谢少荣.仿生型机器人眼球运动控制系统建模[J].机器人,2007,29(4):342-347. 被引量:8
  • 5Leung Chung-Chu, Chan Ka Shing, Chan Hoi-Mei, et al. A new approach for image enhancement ap plied to low-contrast-low-illumination IC and document images [J]. Pattern Recognition Letters,2005, 6(1):769-778.
  • 6Kim J, Kim L, Hwang S. An advanced contrast enhancement using partially overlapped sub-block his togram equalization[J]. IEEE Transactions on Circuits and Systems for Video Teehnology, 2001, 11 (4) : 475-484.
  • 7Reza Ali. Realization of the contrast limited adaptive histogram equalization for real time image enhance- ment[J]. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2004, 38(1):35-44.
  • 8Cheng H, Shi X. A simple and effective histogram equalization approach to image enhancement [J]. Digital Signal Processing, 2004, 14(2) :158-170.
  • 9I.iu Dang-hui, Lam Kin-man, Shen Lan-sun. Illumination invariant face recognition[J]. Pattern Recognition, 2005, 38(10): 1705-1716.
  • 10Kim Yeon-Ho, Martinez Aleix, Kak Avi. Robust motion estimation under varying illumination [J]. Image and Vision Computing, 2005, 23(4):365-375.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部