期刊文献+

基于马尔可夫链蒙特卡罗方法的统计过程调整技术研究 被引量:5

Statistical process adjustment technique based on Markov chain Monte Carlo approach
在线阅读 下载PDF
导出
摘要 建立了统计过程调整问题模型,研究了基于马尔可夫链蒙特卡罗方法的统计过程调整技术,并通过吉布斯抽样实现了偏移量的参数估计。在参数未知及参数已知的条件下,通过与其他方法的实例对比研究,验证了该方法的可行性及性能优势,并对参数未知条件下基于该方法的统计过程调整技术进行了改进。 Based on study of the Statistical Process Adjustment (SPA) problem in quality control area, the SPA problem model was set up. Then SPA techniques based on Markov Chain Monte Carlo (MCMC) approach were studied, and Gibbs sampling was used to estimate setup errors. Comparing to other methods which have been introduced to solve the problem on the premises of known parameter and unknown parameter, the feasibility and performance advantages of MCMC approach were proved. Furthermore, SPA techniques based on this approach with unknown parameters were also improved .
出处 《计算机集成制造系统》 EI CSCD 北大核心 2007年第6期1210-1217,共8页 Computer Integrated Manufacturing Systems
基金 国家863/CIMS主题资助项目(2001AA412150 2003AA411110)~~
关键词 马尔可夫链蒙特卡罗方法 统计过程调整 单向分类随机效应模型 吉布斯抽样 Markov chain Monte Carlo approach statistical process adjustment one-way random effects model Gibbs sampling
  • 相关文献

参考文献17

  • 1GRUBBS F E.An optimum procedure for setting machines or adjusting processes[J].Industrial Quality Control,1983,15(4):186-189.
  • 2CASTILLO E D.A note on two process adjustment models[J].Quality and Reliability Engineering International,1998,14(1):23-28.
  • 3SACHS E,HU A,INGOLFSSON A.Run by run process control:combining SPC and feedback control[J].IEEE Transactions on Semiconductor Manufacturing,1995,8 (1):26-43.
  • 4CARLIN B,SIDHARTHA C.Bayesian model choice through Markov chain Monte Carlo[J].Journal of the Royal Statistical Association (Series B),1995,57(3):473-484.
  • 5PEREZ C J,MARTIN J,RUFO M J.Sensitivity estimations for Bayesian inference models solved by MCMC methods[J].Reliability Engineering & System Safety,2006,91 (10):1310-1314.
  • 6GELFAND E A,SMITH F M A.Sampling-based approaches to calculating marginal densities[J].Journal of the American Statistical Association,1990,85(410):398-409.
  • 7白伟,何晨,诸鸿文.MCMC方法及其在移动通信中的应用[J].通信技术,2002,35(8X):6-8. 被引量:3
  • 8HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei.Target tracking in glint noise using a MCMC particle filter[J].Journal of Systems Engineering and Electronics,2005,16(2):305-309. 被引量:5
  • 9MOSTAFA S M,AHMAD R.Empirical Bayes quadratic estimators of variance components in normal linear models[J].Statistics,1986,17(3):337-348.
  • 10SPIEGELHALTER D J,THOMAS A,BEST N G,et al.BUGS:Bayesian inference using Gibbs sampling.user manual Version 1.4[M].Cambridge,Mass.,USA:Medical Research Council Biostatistics Unit,2003.

二级参考文献13

  • 1Skolnik M L. Introduction to radar systems. McGrawHill, New York, 1980.
  • 2Wu W R, Cheng P P. A nonlinear IMM algorithm for maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. , 1994, AES-30: 875~885.
  • 3Hewer G A, Martin R D, Zeh J. Robust preprocessing for Kalman filtering of glint noise. IEEE Trans. Aerosp.Electron. Syst., 1987, AES-23: 120~128.
  • 4Durovic Z M, Kovacevic B D. QQ-plot approach to robust Kalman filtering. Int. J. of Control, 1994, 61(4): 837~857.
  • 5Masreliez C J. Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. on Automatic Control, 1975. 107~ 110.
  • 6Wu W R. Target tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst., 1993, 29(1): 174~185.
  • 7Daeipour E, Bar-Shalom Y. An interacting multiple model approach for target tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst., 1995, 31 (2): 706-715.
  • 8Daeipour E, Bar-Shalom Y. IMM tracking of maneuvering targets in the presence of glint. IEEE Trans. Aerosp.Electron. Syst., 1998, 34(3): 996~1003.
  • 9Arulampalam M S, Maskell S, et. al. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking.IEEE Trans. Signal Processing, 2002, 50:174~ 188.
  • 10Djuric P M, Kotecha J H, et. al. Particle filtering. IEEE Trans. Signal Processing, 2003, 20:19~28.

共引文献6

同被引文献51

  • 1金振林,张晓辉,高峰.Stewart型指尖力传感器结构尺寸对其灵敏度的影响研究[J].计量学报,2004,25(3):262-265. 被引量:7
  • 2Hengjian CUI Xiuhong GAO.QUADRATIC ADMISSIBLE ESTIMATE OF COVARIANCE IN PSEUDO-ELLIPTICAL CONTOURED DISTRIBUTION[J].Journal of Systems Science & Complexity,2006,19(2):236-255. 被引量:1
  • 3李凯扬,陈本炎.大修与新型更新组合优化的蒙特卡罗模拟研究[J].计算机集成制造系统,2007,13(6):1148-1152. 被引量:4
  • 4CALKINS J M. Quantifying coordinate uncertainty fields in coupled spatial measurement systems[D]. Blaeksbury, Va. , USA:Virginia Polytechnic Institute and State University,2002.
  • 5ZHUANG Hanqi, MOTAGHEDI S H, ROTH Z S, et al. Calibration of multi-beam laser tracking systems[J]. Robotics and Computer Integrated Manufacturing, 2003,19(4):301-314.
  • 6ZHANG Defen, ROLT S, MAROPOULOS P G. Modelling and optimization of novel laser multilateration schemes for high-precision applications[J].Measurement Science and Technology, 2005, 16(12) ,2541-2547.
  • 7FORBES A. Surface fitting taking into account uncertainty structure in coordinate data[J]. Measurement Science and Technology, 2006, 17(3) :553-558.
  • 8MAURICE G C, SIEBERT B R L. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty [J].Metrologia, 2006, 43(4):178-188.
  • 9BALSAMO A, CIOMMO M D, MUGNO R. Evaluation of CMM uncertainty through Monte Carlo simulations[J]. Annals of the CIRP, 1999, 48(1):425-428.
  • 10EGGERT D W, LORUSSO A, FISHER R B. Estimating 3 D rigid body transformations: a comparison of four major algorithms[J]. Machine Vision and Applications, 1997, 9(5) 272-290.

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部