期刊文献+

梯度算法下RBF网的参数变化动态 被引量:13

Gradient learning dynamics of radial basis function networks
在线阅读 下载PDF
导出
摘要 分析神经网络学习过程中各参数的变化动态,对理解网络的动力学行为,改进网络的结构和性能等具有积极意义.本文讨论了用梯度算法优化误差平方和损失函数时RBF网隐节点参数的变化动态,即算法收敛后各隐节点参数的可能取值.主要结论包括:如果算法收敛后损失函数不为零,则各隐节点将位于样本输入的加权聚类中心;如果损失函数为零,则网络中的冗余隐节点将出现萎缩、衰减、外移或重合现象.进一步的试验发现,对结构过大的RBF网,冗余隐节点的萎缩、外移、衰减和重合是频繁出现的现象. To understand the dynamic behavior and improve the structure and performance of neural networks, it is very important to investigate their parameter changing dynamics during the learning. For radial basis function (RBF) networks using gradient descent method to minimize the least squares error cost function, this paper discusses the learning dynamics bf the hidden unit parameters, i.e., their possible values after learning. It is proved that if the cost function is not zero after the algorithm converges, then all hidden units will move to the weighted cluster centers of sample inputs. If cost function is zero, then hidden units will have shrinking, eliminating, out-moving and overlapping happened to those redundant units. Further simulation shows that such phenomena occur frequently in oversized RBF networks.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第3期356-360,365,共6页 Control Theory & Applications
关键词 梯度算法 RBF网 学习动态 神经网络 泛化能力 gradient method RBF network learning dynamics neural networks generalization ability
  • 相关文献

参考文献9

  • 1魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001,27(6):806-815. 被引量:97
  • 2HAYKIN S.Neural Networks:A Comprehensive Foundation[M].New York,NY:Prentice Hall,1997.
  • 3KARAYIANNIS N,RANDOLPH-GIPS M.On the construction and training of reformulated radial basis function neural networks[J].IEEE Trans Neural Networks,2003,14(4):835-846.
  • 4PLATT J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225.
  • 5YINGWEI L,SUNDARARAJAN N,SARATCHANDRAN P.A sequential learning scheme for function approximation and using minimal radial basis neural networks[J].Neural Computation,1997,9(2):1-18.
  • 6MICCHELLI C.Interpolation of scattered data:distance matrices and conditionally positive definite functions[J].Constructive Approximation,1986,2(1):11-22.
  • 7魏海坤,宋文忠,李奇.非线性系统RBF网在线建模的资源优化网络方法[J].自动化学报,2005,31(6):970-974. 被引量:6
  • 8WEI H,AMARI S.Online learning dynamics of radial basis function neural networks near the singularity[C]//Proc of Int Joint Conf on Neural Networks.New York,USA:IEEE Press,2006:4770-4776.
  • 9AMARI S,PARK H,OZEKI T.Singularities affect dynamics of learning in neuromanifolds[J].Neural Computation,2006,18(5):1007-1065.

二级参考文献4

共引文献100

同被引文献103

引证文献13

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部