期刊文献+

基于Kriging函数的序贯近似建模方法 被引量:3

Kriging Function-Based Sequential Approximation Modeling Method
在线阅读 下载PDF
导出
摘要 多学科设计优化过程中需要多次调用高精度学科分析模型,从而造成计算复杂性问题。为解决上述计算复杂性问题,首先提出基于最优LHD的逆序贯试验设计方法,在此基础上结合模型验证,建立了基于Kriging函数的序贯近似建模方法,提出了序贯近似建模收敛准则,通过权衡训练样本数据数量和近似精度,得到精度与效率折衷的近似模型。数学算例证明了该方法的有效性。 In the process of multidisciplinary design optimization, there exits the problem of calculation complexity due to frequently calling high fideity disciplinary analysis model. For solving this problem, the sequential approximation-modeling method using Kriging function is established. This paper first puts forward anti-sequential experiment design method based on optimal Latin Hypercube Design, then develops Kriging function-based sequential approximation modeling method by taking into account model validation, thus the sequential approximation modeling convergence metric is set up, and the high-fidelity and efficient approximate model can be gained by tradeoff between sampling number and approximation precision. Mathematical example demonstrates the validity of this method.
机构地区 [ 国防科技大学
出处 《机械设计与研究》 CSCD 北大核心 2007年第3期6-10,13,共6页 Machine Design And Research
基金 国家"863"计划资助项目(2005AA765030)
关键词 计算复杂性 Kriging函灵符 序贯近似建模 近似模型 模型验证 试验设计方法 computational complexity kriging function sequential approximation modeling approximate mod-el model validation experiment design method
  • 相关文献

参考文献8

  • 1李晓斌.不确定性设计优化理论与方法及其在固体助推发动机设计中的应用研究[D].湖南:国防科技大学,2006.
  • 2Sacks J, Schiller S B, Welch W J. Design for Computer Expertments[ J]. Technometrics, 1989,31 ( 1 ) :41-47.
  • 3张润楚,王兆军.关于计算机试验的设计理论和数据分析[J].应用概率统计,1994,10(4):420-436. 被引量:29
  • 4B Tang. Orthogonal Array-based Latin Hypercubes[ J]. Journal of the American Statistical Association, 1993,88(424) :1392 - 1397.
  • 5张润楚,马长兴.正交表型均匀LH设计和抽样[J].应用概率统计,2001,17(3):243-254. 被引量:7
  • 6K T Fang, D K Lin, J P Winker, et al. Uniform Design: Theory and Application [ J ]. Technometrics ,2000,42 ( 3 ) :237 - 248.
  • 7N V Queipo, R T Haftka, W Shyy, et al. Surrogate-based analysis and Optimization [ J ]. Progress in Aerospace Sciences, 2005,41 (1):1 -28.
  • 8R L Haupt, S E Haupt. Practical Genetic Algorithms [ M ]. London: John Wiley & Sons, Inc. 1998:6-7.

二级参考文献15

共引文献37

同被引文献39

  • 1Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-435.
  • 2Santner T J, Williams B J, Notz W I. The Design and Analysis of Computer Experiments[M]. New York: Springer, 2003.
  • 3Lehman J S. Sequential design of computer experiments for robust parameter design[D]. Ohio: The Ohio State University, 2002.
  • 4Lin Y. An efficient robust concept exploration method and sequential exploratory experimental design[D]. Atlanta, GA: Georgia Institute of Technology, 2004.
  • 5Farhang-Mehr A, Azarm S. Bayesian meta-modeling of engineering design simulations: A sequential approach with adaptation to irregularities in the response behavior[J]. International Journal for Numerical Methods in Engineering, 2005, 62(15): 2104-2126.
  • 6Xiong Y, Chen W, Apley D, et al. A non-stationary covarianee-based Kriging method for metamodeling in engineering design[J]. International Journal for Numerical Methods in Engineering, 2007, 71: 733-756.
  • 7Gibbs M N. Bayesian Guassian Process for regression and classification[D]. UK: University of Cambridge, 1999.
  • 8Koehler J R, Owen A B. Computer Experiments[M]//Handbook of Statistics, 1996, 13: 261-308.
  • 9Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998(13): 455-492.
  • 10Xie M Y, Fang K T. Admissibility and minimaxity of the uniform design measure in nonparametric regression model[J]. Journal of Statistical Planning and Inference, 2003, 83: 101-111.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部