摘要
根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了正交索网结构几何非线性弹性动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值-边值问题的全部特征.文中首先给出正交索网结构几何非线性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到正交索网结构几何非线性动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出正交索网结构几何非线性弹性动力学的5类变量、4类变量、3类变量和2类变量非传统Hamilton型变分原理的互补泛函、以及相空间非传统Hamilton型变分原理的泛函与1类变量非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elasrodynamies of orthogonal cable-net structures can be established systematically. The unconventional Hamilton-type variational principle can fully characterize the initial-boundary-value problem of this dynamics. An important integral relation was given, which can be considered as the generalized principle of vhrtual work for geometrically nonlinear dynamies of orthogonal cable-net structures in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
出处
《应用数学和力学》
CSCD
北大核心
2007年第7期833-842,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10172097)
高校博士点基金资助项目(20030558025)
关键词
非传统HAMILTON型变分原理
正交索网结构
几何非线性
弹性动力学
对偶互补
初值-边值问题
相空间
unconventional Hamilton-type variational principle
geometric nonlinearity
elastodynamics
orthogonal cable-net structure
dual-complementary relation
initial-boundary-value problem
phase space