期刊文献+

基于视觉统计概率模型的目标定位 被引量:2

Object Localization Based on Visual Statistical Probabilistic Models
在线阅读 下载PDF
导出
摘要 复杂场景中的目标定位是目标检测和识别的重要过程,为了更好地对复杂场景中的目标进行定位,基于视觉的概率模型,提出了一种目标定位的新方法。区别于一般的区域分割和边缘检测方法,该方法首先通过建立平滑、纹理、阴影和杂乱等4种不同类型区域特性的概率模型,对场景中的前景和背景进行了概率分析;然后结合不同的尺度大小,标记出图像中显著度较高的目标区域;最后经过边缘轮廓的概率建模和连通性分析来提取完整目标区域。实验结果表明,该方法具有较好的鲁棒性和通用性,不仅符合人的视觉注意特性,而且具有一定的抗背景干扰能力。 Object localization in complex settings is the main process in vision task of detection and recognition. This paper presents a new method for object localization based on visual statistical probabilistic models. It is different from traditional ways of region segmentation and edge detection. First, the method can label the regions with high saliency through regional probabilistic models which were developed using the flat, texture, shading and clutter properties with different scales and then the whole object regions can be extracted by edge probabilistic models and connectivity discussion. Experiments show the approach has strong robustness and generality, because the results are in accord with visual attention properties and the "background" noise is lower.
作者 谢昭 高隽
出处 《中国图象图形学报》 CSCD 北大核心 2007年第7期1234-1242,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(60375011 60575028) 安徽省优秀青年科技基金项目(04042044) "新世纪优秀人才支持计划资助"项目(NCET-04-0560)
关键词 视觉概率模型 区域分割 边缘检测 尺度 visual probabilistic models, region segmentation, edge detection, scale
  • 相关文献

参考文献13

  • 1Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[A].In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C],Hawaii,USA,2001:511-518.
  • 2王海川,张立明.一种新的Adaboost快速训练算法[J].复旦学报(自然科学版),2004,43(1):27-33. 被引量:28
  • 3Schneiderman H,Kanade T.Object detection using the statistics of parts[J].International Journal of Computer Vision,2004,56(3):151-177.
  • 4叶齐祥,高文,王伟强,黄铁军.一种融合颜色和空间信息的彩色图像分割算法[J].软件学报,2004,15(4):522-530. 被引量:119
  • 5Shi J,Malik J.Normalized cuts and image segmentation[A].In:Proceedings of the IEEE Conference on Computer Vision and Pattern Reeognition[C],San Juan,Puerto Rico,1997:731-737.
  • 6Borenstein E,Ullman S.Class specific top down-segmentation[A].In:Proceedings of the European Conference on Computer Vision[C],Copenhagen,Denmark,2001:110-122.
  • 7Sun Y R,Fisher R.Object-based visual attention for computer vision[J].Journal of Artificial Intelligence,2003,146(1):77-123.
  • 8Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 9高文 陈熙霖.计算机视觉[M].北京:清华大学出版社,1999..
  • 10Ullman S,Vidal-Naquet M,Sali E.Visual features of intermediate complexity and their use in classification[J].Nature Neuroscience,2002,5(7):682-687.

二级参考文献4

共引文献165

同被引文献84

  • 1王煜,周立柱,邢春晓.视频语义模型及评价准则[J].计算机学报,2007,30(3):337-351. 被引量:15
  • 2施智平,胡宏,李清勇,史俊,史忠植.视频数据库的聚类索引方法[J].计算机学报,2007,30(3):397-404. 被引量:6
  • 3Moravec H P.Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.Technical Report,CMU-RI-TR-80-03,Pittsburgh,USA:Carnegie Mellon University.Robotics Institute,1980.
  • 4Mikolajczyk K,Schmid C.Scale & Affine Invariant Interest Point Detectors.International Journal of Computer Vision,2004,60(1):63-86.
  • 5Rothwell C A,Zisserman A,Forsythe D A,et al.Planar Object Recognition Using Projective Shape Representation.International Journal of Computer Vision,1995,16(1):57-99.
  • 6Nelson R C,Selinger A.A Cubist Approach to Object Recognition //Proc of the IEEE International Conference on Computer Vision.Bombay,India,1998:614 -621.
  • 7Jurie F,Schmid C.Scale-Invariant Shape Features for Recognition of Object Categories// Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Washington,USA,2004,Ⅱ:90-96.
  • 8Mikolajczyk K,Schmid C.Indexing Based on Scale Invariant Interest Points// Proc of the 8th International Conference on Computer Vision.Vancouver,Canada,2001:525-531.
  • 9Lowe D G.Object Recognition from Local Scale lnvariant Features //Proc of the IEEE International Conference on Computer Vision.Kerkyra,Greece,1999,Ⅱ:1150-1157.
  • 10Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints.International Journal of Computer Vision,2004,60 (2):91 -110.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部