摘要
利用上半连续集值1-集压缩映射的拓扑度以及上半连续集值1-集压缩映射的不动点定理,研究它在锥中的情形,即研究上半连续集值1-集压缩映射正不动点存在的边界条件。对上半连续集值1-集压缩映射的不动点定理在锥中进行了自然的推广,也是对单值1-集压缩映射的正不动点定理进行的一个自然的延伸。
Using topological degree for upper semicontinuous set-valued 1-set-contractive mapping and the fixed point theorems for upper semicontinuous set-valued 1-set-contractive mapping, the boundary conditions of existing positive fixed points is studied for upper semicontinuous set-valued 1-set-contractive mapping. In fact, it is a natural conclusion in the cone for the fixed point theorems of upper semicontinuous set-valued 1-set-contractive mapping, and it is a natural extend for positive fixed point theorems of single-valued 1-set-contractive mapping.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第6期134-136,共3页
Journal of Chongqing University
关键词
集值1-集压缩映射
正不动点
锥
BANACH空间
上半连续
半紧
set-valued 1-set-contractive mapping
positive fixed point
cone
Banach space
upper semicontinuity
demicompact