期刊文献+

基于博弈论模型的多机协同对抗多目标任务决策方法 被引量:24

Mission Decision-making Method of Multi-aircraft Cooperative Attack Multi-object Based on Game Theory Model
在线阅读 下载PDF
导出
摘要 根据多机协同对抗多目标的空战特征,以敌我双方可能的相互攻击组合方式作为策略集,由敌我双方对抗态势分析定量结果确定支付函数,建立完全信息静态博弈模型。通过求解博弈模型的混合策略纳什均衡解,并结合一定作战经验,形成任务决策方法。以无人作战飞机编队对抗敌地对空防御系统为例,对本文所研究的任务决策方法进行了验算。 Based on the characteristics of multi - aircraft cooperative attack multi-object, entirely information static game model is established by selecting attack combination mode as a strategy set and specifying situation analyzing quantitative result as a payment function. A mission decision-making method is formed by working out equilibrium result of game model and referencing any combat experience. The mission decision - making method is validated by giving an example of UCAV swarm carries out mission of SEAD.
出处 《航空计算技术》 2007年第3期7-11,共5页 Aeronautical Computing Technique
基金 国防973(5130802) 航空基金(05D01002)资助项目
关键词 多机协同 对抗多目标 任务决策 博弈论 multi-aircraft cooperative attack multi-object mission decision-making game theory
  • 相关文献

参考文献15

  • 1Arie ("Arik") Yavnai.The process of UCAV autonomy level selection[Z].The World's Largest Unmanned Systems Symposium and Exhibition,2003:1 -13.
  • 2Maj Doug Decker.Establishment of Decision Factors in Support of Cooperative Wide Area Searchand Engagement[A].42th IEEE Conference on Decision and Control (CDC 03)[C].2003:3555-3560.
  • 3Gratch J,Hill R.Continuous Planning and Collaboration for Command and Control in Joint Synthetic Battle spaces[A].Proceedings of the Sixth Conference on Computer Generated Forces and Behavioral Representation[C].STRICOM -.\DMSO,1999.
  • 4Barbato G.Uninhabited Combat Air Vehicle Controls and Displays for Suppression Enemy Air Defenses[J].CSER IAC Gateway,2000,Ⅺ,1-4.
  • 5Kuo-Chi Lin.Robust control of a swarm of UCAVs[A].Enabling technologies for simulation science Ⅵ,2002:108-115.
  • 6Manfred Lehnigk.UCAVs for Indirect Fire Precision Attack[A].The World's Largest Unmanned Systems Symposium and Exhibition,2002:4.
  • 7黄家成,谢奇峰.基于遗传算法的协同多目标攻击空战决策方法[J].火力与指挥控制,2004,29(1):49-52. 被引量:11
  • 8李林森,佟明安.协同多目标攻击空战决策及其神经网络实现[J].航空学报,1999,20(4):309-312. 被引量:53
  • 9汤琼,杨东勇.基于协作协进化的多智能体机器人协作研究[J].计算机工程与应用,2004,40(28):64-66. 被引量:3
  • 10王刚,赵海,魏守智.基于威胁博弈理论的决策级融合模型[J].东北大学学报(自然科学版),2004,25(1):32-35. 被引量:5

二级参考文献74

  • 1王宗军.多目标权系数赋值方法及其选择策略[J].系统工程与电子技术,1993,15(6):35-41. 被引量:80
  • 2祝世京,王书宁,陈珽.多人冲突决策研究综述[J].控制与决策,1995,10(2):97-103. 被引量:3
  • 3陈宝林.数值优化方法的理论与应用[M].北京:清华大学出版社,1989
  • 4Davidor Y,Schwefel H P.An Introduction to Adaptive Optimization Algorithms Based on Principles of Natural Evolution[C].In:Branko Soucek ed. Dynamic,Genetic and Chaotic Programming,John Wiley & Sons, 1992:138~202
  • 5Sefrioui M,Periaux J.Nash Genetic Algorithms:examples and applications[C].In:2000 Congress on Evolutionary Computation,volume 1,IEEE Service Center, Piscataway , NJ , 2000-07 : 509~516
  • 6Periaux J,Chen H Q,Mantel B et al.Combining Game Theory and genetic Algorithms with Application to DDM-Nozzle Optimization Problems[C].In:Finite Elements in Analysis and Design,37,Elsevier,2001:417 ~429
  • 7Muhlenbein H,Schomisch M,Born J.The parallel genetic algorithm as functoin optimizer[J].Parallel Computing, 1991; 17:619~632
  • 8Erev I,Roth A.On the Need for Low Rationality Cognitive Game Theory:Reinforcement Learning in Experiment Games with Unique Mixed Strategy Equilibria[M].Univ of Pittsburgh, 1996
  • 9Michalewicz Z.Genetic Algorithms+Data Structures=Evolution Programs[M].Springer-Verlag, Berlin, 1992
  • 10Dejong K A.Analysis of Behavior of a Class of Genetic Adaptive Systems[D].Ph.D thesis. Univ of Micigan, 1975

共引文献107

同被引文献203

引证文献24

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部