期刊文献+

青藏高原化学风化和对大气CO_2的消耗通量 被引量:16

Chemical Weathering and Atmospheric CO_2 Consumption of Qinghai—Xizang(Tibet) Plateau
在线阅读 下载PDF
导出
摘要 为了评估青藏高原化学风化对全球气候的影响,笔者等对中国境内源自青藏高原的七条主要河流(金沙江、澜沧江、怒江、黄河、雅砻江、岷江和大渡河)进行了采样和地球化学分析,估算了硅酸盐、碳酸盐风化对河水中主量离子的贡献,以及硅酸盐风化和碳酸盐风化所消耗的大气CO2。研究显示,七条河流流域中硅酸盐风化引起的大气CO2消耗约为0.7×105~3.7×105mol/(km2.a)。结合国外学者对于喜马拉雅山南缘三条河流(恒河、布拉马普特拉河和印度河)的研究结果可以得出,发源于喜马拉雅山—青藏高原的主要十条河流流域硅酸盐风化平均共消耗大气CO2328×109mol/a,仅占全球大陆硅酸盐岩风化所消耗大气CO28700×109mol/a的3.8%,并仅为全球通过河流向海洋输送有机碳(来自陆地上生物的消耗)通量的2.5%。 In order to evaluate better the influence of weathering of the Qinghai-Xizang(Tibet) Plateau and the Himalaya on the global climate, we present river chemistry data for the seven Chinese rivers(the Jinsha River, Yalong River, Minjiang River, Dadu River, Lancang River, Nujiang River and Yellow River) originating in the Qinghai-Xizang(Tibet) Plateau, examine detailedly the geochemistry of these rivers and estimate contributions from silicate and carbonate weathering on the major ions in these river water, we also present CO2 consumption fluxes via silicate and carbonate weathering. The results show that in tlaese rivers, the long term COz consumption by silicate weathering in the seven Chinese river basins range from 0. 7 × 10^5 mol/(km^2 · a) to 3.7 × 10^5 mol/(km^2 · a). Combined with the Ganges, Brahmaputra and Indus, the main ten rivers originating in the Himalaya and Qinghai--Xizang(Tibet) Plateau consume the atmospheric CO2 328 × 10^9 mol/a in all. But it is only 3.8% of the CO2 consumption derived by the global silicate weathering (8700 × 10^9 mol/a), and only accounting for 2. 5% of the flux of organic carbon transported annually to the ocean by rivers.
出处 《地质论评》 CAS CSCD 北大核心 2007年第4期515-528,共14页 Geological Review
基金 国家自然科学基金资助项目(编号40473009和40331001)的成果
关键词 青藏高原-喜马拉雅山 河流 大陆风化 CO2消耗通量 Qinghai--Xizang(Tibet) Plateaul continental weathering atmospheric CO2 consumption
  • 相关文献

参考文献3

二级参考文献49

  • 1王平 皇翠兰 等.西藏希夏邦马峰地区雪冰化学特征[J].环境科学,1988,9(1):23-26.
  • 2蒲健辰 王平 皇翠兰.长江江源地区冰川冰、雪、水的化学特征[J].环境科学,1988,9(4):14-19.
  • 3刘嘉麒.背景降水北京[M].中国环境科学出版社,1995.30-44.
  • 4Gibbs R J. Water chemistry of the Amazon River [J]Geochimica et Cosmochimica Acta, 1972, 1 (36) : 1061 -1066.
  • 5Meybeck M. Atmospheric inpus and fiver transport of dissolved substances[C] in: Proc. Hamburg Syrup., Int. Assoc. Hydrol. Sci. Publ. 1983,141 : 173 - 190.
  • 6Meybeck M. Global chemical weathering of superficial rocks estimated from river dissolved loads [ J ]. Am. J.1987,287:401 - 428.
  • 7StAIIArd R F. Major element geochemistry of the Amazon River system[D]. Ph. D. Thesis, massachusetts Inst Technol, 1980.
  • 8StAIIArd R F & Edmond J M. Geochemistry of the Amazon: Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge [ J ]. J.Geophys. Res. 1981,86 : 9844-9858.
  • 9Gan W B. The amount of carbon transported to the sea by the Yangtze and Yellow Rivers ( P. R. China) during the half year: July-December, 1982.In transport of Carbon and Minerals in Major V/odd Rivers[ R]. Mitt. Geo. Palaon. Inst. univ. hamburg, SCOPE/UNEP Sandbank. 1982,52:437 - 448.
  • 10Yuan H L, Hisayuki Teraoka, Tsuo S Y, et al. The elemental composition of suspended particles from the Yellow and Yangtze Rivers [ J ]. Geochim, cosmochim. Acta.1984,48 : 1561 - 1564.

共引文献63

同被引文献299

引证文献16

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部