摘要
The eco-environmental frangibility is studied by choosing the factors of land use class change and vegetation cover rate, and the equation of eco-environmental frangibility and its evaluation system are established based on remote sensing (RS) and geographic information system technology (GIS). Four different years of TM images are selected to calculate land use change grads and vegetation cover rate, and the relationship between the two factors and eco-environment frangibility index are build, taking Fuzhou as an example. The character of times change and space distribution of eco-environment frangibility are described. The result indicates the area of eco-environment frangibility increased 2.6% in Fuzhou during twelve years, and expands from the region between infield and forest land to forest land in space distribution.
The eco-environmental frangibility is studied by choosing the factors of land use class change and vegetation cover rate, and the equation of eco-environmental frangibility and its evaluation system are established based on remote sensing (RS) and geographic information system technology (GIS). Four different years of TM images are selected to calculate land use change grads and vegetation cover rate, and the relationship between the two factors and eco-environment frangibility index are build, taking Fuzhou as an example. The character of times change and space distribution of eco-environment frangibility are described. The result indicates the area of eco-environment frangibility increased 2.6% in Fuzhou during twelve years, and expands from the region between infield and forest land to forest land in space distribution.
基金
the Department of Science and Technology of Fujian Province (2003I015)
Open Foundation of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (WCL (02)0104)