期刊文献+

管道汇流口局部阻力试验研究 被引量:21

Experimental study on local flow resistance at junctions of circular pipes
在线阅读 下载PDF
导出
摘要 通过试验研究并结合水动力学原理,在分析汇流口独特水力特性及能量损失机理的基础上,提出了适用于任意角度汇流管路分析计算的局部能量损失系数的普遍表达式。分析了交汇角、流量比(支管流量/合流量)及面积比(支管面积/主管面积)等因素的影响规律,并对各影响因素进行了分析比较。研究结果表明,管道汇流口水流的局部能量损失,必须考虑汇入断面上支流沿下游主流方向的动量分量和主支流间相互掺混引起的附加摩擦阻力的影响。局部能量损失系数随交汇角、流量比增加而增加。当流量比较小时支流的局部水头损失系数出现负值,而当流量比较大时主流的局部水头损失系数出现负值。分离区内外压强差随交汇角增大而增大,随流量比的增大先增大后减小。 The flow characteristics and mechanism of energy loss at junction of circular pipes were investigated experimentally. A universal expression for calculating the energy loss coefficient for junctions with arbitrary confluence angle was suggested. The effect of confluence angle, discharge ratio (ratio of branch pipe discharge to total discharge in main pipe) and area ratio (ratio of branch pipe area to main pipe area) were analyzed. It is found that the momentum contribution of the branch flow in downstream direction and the additional friction induced by the mixing of the flow at the junction are important factors affecting the flow characteristics and energy loss. The coefficient of local energy loss increases as the confluence angle and discharge ratio increases. The local energy loss coefficient of branch pipe may be negative if the discharge ratio is small. Whereas, the local energy loss coefficient of main pipe will be negative if the discharge is great. The difference of pressure inside and outside of the separation zone increases as the confluence angle increases. This pressure difference tends to increase following the increase of discharge ratio at first and decreases after a peak value occurred.
出处 《水利学报》 EI CSCD 北大核心 2007年第7期812-818,共7页 Journal of Hydraulic Engineering
基金 国家自然科学基金资助项目(50378049)
关键词 有压管道流 局部能量损失 管道汇流口 流量比 面积比 junction of pressurized pipes local energy loss confluence angle discharge ratio area ratio
  • 相关文献

参考文献10

  • 1Wylie E B,Streeter V L.Fluid Transients[M].New York:McGraw-Hill International Book Company,1978.
  • 2Idelchik I E.Handbook of hydraulic resistance[M],2nd Ed.New York:Hemisphere publishing corp.,1986.
  • 3Mao Zeyu.Partially filled unsteady flow analysis in the region of pipe junctions[D].Edinburgh,UK:Heriot-Watt University,1993.
  • 4Miller D S.Internal flow systems[M].2nd Ed.Houston,Tex:Gulf publishing Co.,1990.220-246.
  • 5SERRE M L.A study of energy loss at combining pipe junction in fish bypass systems[D].Iowa:The University of Iowa,1992.
  • 6依德利契克著.实用流体阻力手册[K].华绍曾,杨学宁,李世铎,等译,北京:国防工业出版社,1985.317-326.
  • 7茅泽育,罗昇,赵升伟,张磊.等宽明渠交汇口水流一维数学模型[J].水利学报,2004,35(8):26-32. 被引量:21
  • 8茅泽育,赵升伟,张磊,黄继汤.明渠交汇口三维水力特性试验研究[J].水利学报,2004,35(2):1-7. 被引量:48
  • 9茅泽育,张磊,陈嘉范,黄继汤.数字粒子图像处理技术及其在明渠交汇试验研究中流速测量的应用[J].水利学报,2003,34(6):65-71. 被引量:15
  • 10赵凯.圆形断面管道汇流口试验研究[D].北京:清华大学水利水电工程系,2006.

二级参考文献14

  • 1李玉梁,陈朝泉,余常昭.环境水力学试验研究中的图象处理技术[J].应用基础与工程科学学报,1995,3(4):88-104. 被引量:6
  • 2茅泽育,赵升伟,罗昇,张磊.明渠交汇口水流分离区研究[J].水科学进展,2005,16(1):7-12. 被引量:40
  • 3曹词雄.[D].北京:清华大学,1998.
  • 4Taylor E H. Flow characteristics at rectangular open-channel junctions [J]. Trans. ASCE, 1944,109:893-902.
  • 5Gurram S K. Transitional flow in channel junction[J]. J. Hydr. Res.,1993,31(5):601-604.
  • 6Hager W H. Transitional flow in channel junctions [J].J.Hydr. Eng.ASCE,1989,115(2):243-259.
  • 7Ramamurthy A S, Carballada L B,Tran D M Combining open-channel flow at right-angeled junctions[J].J.Hydr.Eng.,ASCE,1988,114(12):1449-1460.
  • 8Hsu C C,Lee W J,Chang C H.Subcritical open-channel junction flow[J].J. Hydr.Eng.ASCE,1998,124(8):847-855.
  • 9Hsu C C,Wu F S,Lee W J.Flow at 90° equal-width open-channel junction[J]. J.Hydr.Eng.ASCE,1998,124(2):186-191.
  • 10田晓东,陈嘉范,李云生,李玉梁.DPIV 技术及其应用于潮汐流动表面流速的测量[J].清华大学学报(自然科学版),1998,38(1):103-106. 被引量:10

共引文献66

同被引文献164

引证文献21

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部