期刊文献+

基于噪声-纹理检测算子的图像去噪方法 被引量:4

An Image Denoising Method Based on a Noise-Texture Operator
在线阅读 下载PDF
导出
摘要 利用能量泛函极小化方法对图像进行滤波时,通常用分段常数函数来近似图像,在滤除噪声的同时也丢失了许多纹理和细节信息.基于这一不足,本文提出一个噪声—纹理检测算子,利用这一算子对滤掉的信息作进一步检验,从而尽可能多的抽取出被误滤掉的纹理信息,将这些纹理信息补充回滤波后的图像中得到最终的去噪图像.实验表明,本文提出的算子对去噪后图像纹理信息的保留具有明显效果. Denoising algorithm based on gradient dependent energy functional, modify images towards piecewise constant functions. Important information, encoded in image features like textures or certain details, is often compromised in the process of denoising. A noise-texture detect operator is proposed in this paper. The filtered information, during the process of denoising, will be checked again by using this operator, then textures and details filtered by mistake will be extracted as much as possible. After refilling these textures and details into the denoised image,the final denoised image is obtained. Experiment results show that our new method has obvious effect in preserving textures and details.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第7期1372-1375,共4页 Acta Electronica Sinica
基金 国家部委预研基金(No.5148702020DZ0103)
关键词 能量泛函 图像去噪 纹理信息 energy functional image denoising texture information
  • 相关文献

参考文献9

  • 1J Weickert.A review of nonlinear diffusion filtering[A].B ter Haar Romeny,L Florack,J Koenderink,M Viergever (Eds.).Scale-Space Theory in Computer Vision[C].Berlin:Springer,1997.3-28.
  • 2Y You,W Xu,A Tannenbaum,M Kaveh.Behavioral analysis of anisotropic diffusion in image processing[J].IEEE Transactions on Image Process,1996,5(11):68-79.
  • 3谢美华,王正明.基于图像分解的多核非线性扩散去噪方法[J].计算机应用,2005,25(4):757-759. 被引量:2
  • 4姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 5G Gilboa,Y Y Zeevi,N Sochen.Texture preserving variational denoising using an adaptive fidelity term[A].Proc VLSM[C].Nice,France:IEEE,2003,10:137-144.
  • 6L Rudin,S Osher,E Fatemi.Nonlinear total variation based noise removal algorithms[J].Physica D.1992,27(60):259-268.
  • 7P Perona,J Malik.Scale-space and edge detection using anisotropic diffusion[J].PAMI,1990,12(7):629-639.
  • 8G Gilboa,N Sochen,Y Y Zeevi.Variational denoising of partly-textured images by spatially varying constraints[J].IEEE Transactions on Image Processing.2006,15(8):2281-2289.
  • 9V Francesco,E Shigeru,N Sugimoto.Estimating gradient in P-M equation[J].IEEE Signal Processing Magazine.2004,21(2):39-46.

二级参考文献19

  • 1WEICKERT J.A Review of Nonlinear Diffusion Filtering[ R].Scale-Space Theory in Computer Vision,Lecture Notes in Computer Science,Berlin:Springer,1997.3-28.
  • 2PERONA P, MALIK J.Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 3WEICKERT J.Coherence-enhancing dffusion filtering[J].International Journal of Computer Vision,1999,31(2/3):111-127.
  • 4YOU YL,KAVEH M.Fourth-Order partial differential equations for noise removal[J].IEEE Transaction on Image Processing,2000, 9(10):1723-1730.
  • 5LYSAKER M,LUNDERVOLD A,TAI XC.Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,12(12):1579-1590.
  • 6SHIH AC,LIAO HM,LU CS.A new iterated two-Band diffusion equation:Theory and its application[J].IEEE Transaction on Image Processing,2003,12(4):466-476.
  • 7Perona P,Malik J.Scale space and edge detection using anisotropic diffusion[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 8Catté F,et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J Numerical Analysis,1992,29(1):182-193.
  • 9Lin Z C,Shi Q Y.An anisotropic diffusion PDE for noise reduction and thin edge preservation[A].Proc Tenth International Conference on Image Analysis and Processing[C].IEEE Computer Society,Venice,Italy,1999.102-107.
  • 10Mrazek P,Weickert J,Steidl G.Correspondences between wavelet shrinkage and nonlinear diffusion[A].Scale-Space methods in Computer Vision.4th International Conference,Scale Space 2003[C].Beilin:Springer,2003.101-116.

共引文献14

同被引文献34

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部