期刊文献+

基于Gabor原子变换和支持向量机的毫米波雷达目标识别方法 被引量:4

Target Recognition Method of MMW Radar Based on Gabor Atom Transformation and Support Vector Machine
在线阅读 下载PDF
导出
摘要 为提高毫米波雷达目标识别能力,提出一种基于Gabor原子变换和支持向量机(SVM)的雷达目标识别方法。该方法充分利用了Gabor原子变换在信号表示方面的有效性以及SVM在分类方面的优越性,首先将雷达回波信号进行Gabor原子变换,获得信号的特征量,然后利用SVM网络进行分类识别。实验结果表明:该方法可行且具有较高的识别率。 In order to improve the ability of target recognition of millimeter wave radar, a method of target recognition based on Gabor atom transform and support vector machine(SVM) was proposed. The Gabor atom transform's validity in signal expression and the SVM's advantage in signal classification are fully utilized in the method. The features of echo signals of radar were extracted by Gabor atom transform and classified and recognized by SVM. The results of experiments show that the method is feasible and has higher recognition probability.
作者 杨国 李兴国
出处 《兵工学报》 EI CAS CSCD 北大核心 2007年第7期826-829,共4页 Acta Armamentarii
基金 国防重点预研资助项目(41305020501)
关键词 雷达工程 Gabor原子 支持向量机 目标识别 radar engineering Gabor atom support vector machine target recognition
  • 相关文献

参考文献8

二级参考文献21

  • 1[1]Michael J Lyons et al. Automatic Classification of Single Facial Images[J].IEEE Trans PAMI, 1999; 21 ( 12 ): 1357~1362
  • 2[2]Lee T S.Image representation using 2D gabor wavelets[J].IEEE TransOn PAMI, 1996; 18(10) :959~971
  • 3[3]Vladimir N Vapnik.The Nature of Statistical Learning Theory[M].Springer, 1995
  • 4[4]E Osuna,R Freund,F Girosi.Training support vector machines:Anapplication to face detection[C].In:Proceedings of CVPR'97,PuertoRico, 1997
  • 5[5]J Platt. Fast training of support vector machines using sequentialminimal optimization[C].In:B Scholkopf,C J C Burges,A J Smola eds.Advances in Kernel Methods---Support Vector Learning,Cambridge,MA,MIT Press, 1999:185~208
  • 6[6]S S Keerthi,S K Shevade,C Bhattacharyya et al.A Fast IterativeNearest Point Algorithm for Support Vector Machine Classifier Design[R].Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept ofComputer Science and Automation Indian Institute of Science Bangalore, India, 1999
  • 7[7]LibSVM.http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  • 8[8]AT&T Laboratories Cambridge.The Database of Faces.http://www.uk.research.att.com/facedatabase.html
  • 9[9]T Joachims. 11 in: Making large-Scale SVM Learning Practical[C].In:B Scholkopf,C Burges,A Smola ed.Advances in Kernel MethodsSupport Vector Learning,MIT Press,1999
  • 10[10]F Samaria,S Young. HMM based architecture for face identification[J].Imagn and Computer Vision,1994; 12:537~543

共引文献24

同被引文献36

  • 1周燕,覃如贤,巴军.基于多源信息融合的车辆防碰撞控制系统[J].微计算机信息,2006,22(07S):75-77. 被引量:2
  • 2朱志宇,张冰,王建华.灰关联分析和证据理论在雷达辐射源识别中的应用及改进[J].电光与控制,2007,14(1):34-37. 被引量:17
  • 3刘华林,杨万麟.基于QR分解的广义辨别分析用于雷达目标识别[J].红外与毫米波学报,2007,26(3):205-208. 被引量:4
  • 4单甘霖,梅卫,王春平.联合目标跟踪与分类技术的进展及存在问题[J].兵工学报,2007,28(6):733-738. 被引量:13
  • 5盛骤 谢式千 潘承毅.概率论与数理统计[M]第2版[M].北京:高等教育出版社,1989.99-118.
  • 6Plataniotis K N, Androutsos D, Venetsanopoulos A N. Adaptive fuzzy systems for muhichannel signal processing [J]. Proceedings of the IEEE,1999, 87(9): 1601-1622.
  • 7Ruegg M, Meier E, Nuesch D. Capabilities of dual-frequency millimeter wave SAR with monopulse processing for ground moving target indication [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 539-553.
  • 8Perry R P, Dipietro R C, Fante R L. SAR imaging of moving targets[J].IEEE Transactions on AES, 1999, 35(1): 188-199.
  • 9Miller M I,Srivastava A,Grenander U.Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition[J].Proceedings of the IEEE Transactions on Signal Processing,1995,43(11):2678-2690.
  • 10Herman S,Moulin P.A particle filtering approach to FM-band passive radar tracking and automatic target recognition[C] //Proceedings of the IEEE Aerospace Conference.Big Sky Montana:IEEE Press,2002:1789-1808.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部