期刊文献+

LaNi_(4.5)Al_(0.5)储氢合金固溶相的密度泛函研究 被引量:3

Density functional theory study on solid solution phase of LaNi_(4.5)Al_(0.5) hydrogen storage alloys
在线阅读 下载PDF
导出
摘要 基于密度泛函理论,采用全势线性缀加平面波方法(FLAPW),研究LaNi4.5Al0.5储氢合金固溶相α-LaNi4.5Al0.5H0.5和α-LaNi4.5Al0.5H1.0中H原子的占位、态密度和电子密度,分析了H原子的加入对固溶体电子结构和稳定性的影响。结果表明:从能量角度计算得到α-LaNi4.5Al0.5H0.5中H原子最可能占据靠近Al的6m位,α-LaNi4.5Al0.5H1.0中的两个H原子最可能占据6m和4h*位;随着H原子的增加,晶胞主要沿着c轴方向膨胀;Al和Ni,H之间的相互作用是合金含氢固溶体保持稳定的主要因素;态密度图中低能量区域的态密度越大固溶体越稳定;如果EF处于带隙的底部,则体系较稳定。计算结果与已有的实验结果非常一致。 Based on the density functional theory (DFT) and full-potential linearized augmented plane wave (FLAPW) method, the hydrogen occupied sites, electron densities and densities of states were analyzed for the solid solution phase α-LaNi4.5Alo.5Ho.5 and α-LaNi4.5Al0.5H1.0. The hydrogen atom in α-LaNi4.5Al0.5H0.5 is found to prefer the 6m position near aluminum atom, the two hydrogen atoms in α-LaNi4.5Al0.5H0.5H1.0 are most likely to take the 6m and 4h* sites by total energy minimization calculation. The lattice expansion is mainly along the c axis. The interaction between aluminum and nickel, hydrogen plays a dominant role in the stability of LaNi4.5Al0.5Hx solid solution phase. The smaller the shift of EF towards higher energy region, the more stable the compounds will be. The calculated results are compared with the existent experimental data and discussed in light of previous works.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2007年第7期1160-1165,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学-中国工程物理研究院联合基金(10276027)
关键词 LaNi4.5Al0.5合金 密度泛函理论 线性缀加平面波方法(FLAPW) 固溶相 LaNi4.5Al0.5 alloys density functional theory full-potential linearized augmented plane wave (FLAPW) method solid solution phase
  • 相关文献

参考文献5

二级参考文献30

  • 1齐新华,高涛,朱正和,李跃勋,陈波,范智剑.LaNi_5电子与能量结构的全电子计算[J].原子与分子物理学报,2004,21(3):366-372. 被引量:8
  • 2熊义富,敬文勇,罗德礼.Al效应对LaNi_(5-x)-Al_x系合金贮氢性能的影响[J].稀有金属材料与工程,2005,34(2):240-243. 被引量:4
  • 3康龙,罗永春.贮氢合金热力学测试装置及测试方法的研究[J].甘肃工业大学学报,1995,21(1):1-5. 被引量:7
  • 4[1]Sakai T, Oguro K, Miyamura H, Kuriyama N.Some fuctors afficting the cycle lives of LaNi5-Based alloy electrodes of hydrogen batteries[J]. J. Less-common Met, 1990,161: 193.
  • 5[2]Yukawa H, Moringa M, Takahashi Y. Alloying effect on the electronic structures of hydrogen storage compounds[J].J. Alloys and Compounds, 1997:253~254: 322.
  • 6[4]Hector Jr L G, Herbst J F,Capehart T W. Electronic structure calculations for LaNi5 and LaNi5H7:energetics and elastic properties[J].J. Alloys and Compounds, 2003,353:74~85.
  • 7[5]Blaha P, Schwarz K, Sorantin P,et al.. Full-potential, linearized augmented plane wave programs for crystalline systems[J]. in Comput. Phys. Commun. 1990,59: 399.
  • 8[6]Malik S K, Arlinghaus F J, Wallace W E. Calculation of the spin-polarized energy-band structure of LaNi5 and GdNi5[J].Phys.Rev.,1982,B25:6 488.
  • 9[7]Nakamura H, Nguyen-Manh D, Pettifor D G.Electronic structure and energetics of LaNi5, α-La2Ni10H, and β-La2Ni10H14[J]. Journal of Alloys and Compounds, 1998),281:81~91.
  • 10[8]Weaver J H, Franciosi A, Wallace W E, et al.Electronic structure and surface oxidation of LaNi5, Er6Mn23, and related systems[J]. J. Appl. Phys.,1980,51:5 847.

共引文献24

同被引文献45

  • 1高涛,齐新华,陈波.铝合金化对LaNi_(5-x)Al_x电子结构的影响[J].中国有色金属学报,2005,15(7):1092-1099. 被引量:7
  • 2Willems J J G. Philips J Res[J], 1984, 39(1): 98.
  • 3Dayan D, Minta M H. Journal of the Less-Common Metals[J], 1980, 73:15.
  • 4Osumi Y, Suzuki H, Kato A. Journal of the Less-Common Metals[J], 1980, 74:271.
  • 5Wernick J H, Geller G. Acta Crystallogr[J], 1959, 12:662.
  • 6Mukerjee S, McBreen J, Reilly J J et al. Electromchem Sot[J], 1995, 142(7): 2278.
  • 7Willems J G, Buschow K H. Journal of the Less-Common Metals[J], 1987, 129:13.
  • 8Bittner H F, Badcook C C. Electrochem Soc[J], 1983, 130(2): 259.
  • 9Percheron-Guegan A, Lartigue G, Achard J C et al. Journal of the Less-Common Metals[J], 1980, 74:1.
  • 10Soubeyroux J L, Percheron-Guegan A, Achard J C. Journal of the Less-Common Metals[J], 1987, 129:181.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部