摘要
利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模型,采用最大后验概率方法从含噪小波系数中估计出无噪声污染的小波系数;最后经重构得到滤波后的图像。实验结果表明,此方法优于其他一些相干斑抑制方法。
In this paper, a speckle reduction method for Synthetic Aperture Radar (SAR) images based on Dual Tree Complex Wavelet Transform (DTCWT) is proposed, for the DTCWT has approximate shift-invariant and good directional selectivity. It first presumes the probability distribution function for complex wavelet coefficients of the original nature image, and then applies MAP theory to estimate coefficients from the noisy wavelet coefficients. Filtered image can be derived after inversed DTCWT. Experimental results demonstrate that the proposed method has superior performance to several other denoising methods.
出处
《微电子学与计算机》
CSCD
北大核心
2007年第8期25-27,共3页
Microelectronics & Computer
基金
航空基金项目(04I53070
05I53076)
国家自然基金项目(60472072)
博士点基金项目(20040699034)
黄委会治黄专项课题研究项目(2004SZ01-04)
中国博士后科学基金(20060401009)