期刊文献+

基于双树复数小波变换的SAR图像噪声抑制方法 被引量:4

Speckle Reduction From SAR Images Based on Dual Tree Complex Wavelet Transform
在线阅读 下载PDF
导出
摘要 利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模型,采用最大后验概率方法从含噪小波系数中估计出无噪声污染的小波系数;最后经重构得到滤波后的图像。实验结果表明,此方法优于其他一些相干斑抑制方法。 In this paper, a speckle reduction method for Synthetic Aperture Radar (SAR) images based on Dual Tree Complex Wavelet Transform (DTCWT) is proposed, for the DTCWT has approximate shift-invariant and good directional selectivity. It first presumes the probability distribution function for complex wavelet coefficients of the original nature image, and then applies MAP theory to estimate coefficients from the noisy wavelet coefficients. Filtered image can be derived after inversed DTCWT. Experimental results demonstrate that the proposed method has superior performance to several other denoising methods.
出处 《微电子学与计算机》 CSCD 北大核心 2007年第8期25-27,共3页 Microelectronics & Computer
基金 航空基金项目(04I53070 05I53076) 国家自然基金项目(60472072) 博士点基金项目(20040699034) 黄委会治黄专项课题研究项目(2004SZ01-04) 中国博士后科学基金(20060401009)
关键词 SAR图像 相干斑抑制 双树复数小波变换 SAR image speckle reduction dual tree complex wavelet transform
  • 相关文献

参考文献6

  • 1Henri Maitre.合成孔径雷达图像处理[M].孙洪等译.北京:电子工业出版社,2005.
  • 2Gagnon L,Jouan A.Speckle filtering of SAR images-A comparative study between complex-wavelet-based and standard filters[M].In Proc.SPIE,1997
  • 3Kingsbury G.Complex wavelets for shift invariant analysis and filtering of signals[J].Journal of Applied and Computational Harmonic Analysis.2001,10(3):234-253
  • 4Kingsbury.The dual-tree complex wavelet transform:a new efficient tool for image restoration and enhancement[A].In Proc.EUSIPCO 98[C].Rhodes:EURASIP,1998:319-322
  • 5易翔,王蔚然.复数小波统计模型在图像降噪中的应用[J].光电工程,2004,31(8):69-72. 被引量:4
  • 6Min Dai,Cheng Peng,Andrew K Chan,et al.Bayesian wavelet shrinkage with edge detection for SAR image despeckling[J].IEEE Trans.Geosci.Remote Sensing,2004,42:1642-1648

二级参考文献7

  • 1DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
  • 2DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
  • 3DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Statistical Assoc, 1995, 90(432): 1200-1224.
  • 4CHANG S, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
  • 5CROUSE M S, NOWAK R D. Wavelet-based signal processing using hidden markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
  • 6KINGSBURY N. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement[A]. Proc. EUSIPCO 98[C], Rhodes: EURASIP, 1998: 319-322.
  • 7KINGSBURY N. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties[A]. Proc. IEEE Conf. on Image Processing[C], Vancouver:IEEE, 2000, 2: 375-378.

共引文献7

同被引文献42

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部