期刊文献+

Said-Ball曲线的细分算法 被引量:2

Subdivision Algorithm for the Said-Ball Curves
在线阅读 下载PDF
导出
摘要 设实数c(0<c<1)将广义Said-Ball曲线r(u),0≤u≤1分为两段r[0,c](u)=r[cu]和r[c,1](u)=r(c+(1-c)u),0≤u≤1.利用对偶泛函,给出用显式表示的Said-Ball曲线的细分算法(细分矩阵)。所给出的显示细分矩阵有利于曲线的生成与合并方面的研究。 Given a real numbe, let and, be two subdivision curves of the generalized Said-Ball curves. Using the dual functional, this paper presents an explicit subdivision algorithm for the Said-Ball curve (subdivision matrix). It is a powerful tool to incorporate and create curves.
作者 夏成林 崔靖
出处 《泰州职业技术学院学报》 2007年第4期67-70,共4页 Journal of Taizhou Polytechnic College
关键词 SAID-BALL曲线 对偶泛函 细分矩阵 Said-Ball curve dual functional subdivision algorithm
  • 相关文献

参考文献4

二级参考文献10

  • 1Wu HongyiDept. ofMath. and Mech., HefeiUniv. of Technology,Hefei230009..UNIFYING REPRESENTATION OF BZIER CURVE AND GENERALIZED BALL CURVES[J].Applied Mathematics(A Journal of Chinese Universities),2000,15(1):109-121. 被引量:15
  • 2奚梅成.Ball基函数的对偶基及其应用[J].计算数学,1997,19(2):147-153. 被引量:18
  • 3王国瑾.高次Ball曲线及其应用[J].高校应用数学学报:A辑,1987,2(1):126-140.
  • 4Ball A A. CONSURF, Part 1: Introduction of the conic lofting tile[J]. Computer-Aided Design, 1974, 6(4): 243~246
  • 5Ball A A. CONSURF, Part 2: Description of the algorithms[J]. Computer-Aided Design, 1975, 7(4): 237~242
  • 6Said H B. Generalized Ball curve and its recursive algorithm[J]. ACM Transactions on Graphics, 1989, 8(4): 360~371
  • 7Hu S M, Wang G J, Jin T G. Properties of two types of generalized Ball curves[J]. Computer-Aided Design, 1996, 28(2): 125~133
  • 8Phien H N, Dejdumrong N. Efficient algorithms for Bézier curves[J]. Computer Aided Geometric Design, 2000, 17(3): 247~250
  • 9Othman W A M, Goldman R N. The dual basis functions for the generalized Ball basis of odd degree[J]. Computer Aided Geometric Design,1997, 14(5): 571~582
  • 10陈凌钧,骆岩林,童若锋,汪国昭.Bézier曲线与Said-Ball曲线的递归转换算法[J].计算机辅助设计与图形学学报,2001,13(3):264-266. 被引量:3

共引文献34

同被引文献15

  • 1江平,邬弘毅.Wang-Ball基函数的对偶基及其应用[J].计算机辅助设计与图形学学报,2004,16(4):454-458. 被引量:8
  • 2余宏杰,江平,汪峻萍,邬弘毅.Wang-Ball曲线的细分算法及包络[J].计算机辅助设计与图形学学报,2005,17(4):637-643. 被引量:3
  • 3王国瑾.高次Ball曲线及其几何性质[J].高校应用数学学报,1987,2(1):126-140.
  • 4Goodman T N T,Said H B.Properties of generalized Ball curves and surfaces[J].Computer-Aided Design,1991,23(8):554-560
  • 5Goodman T N T,Said H B.Shape-preserving properties of the generalized Ball basis[J].Computer Aided Geometric Design,1991,8(2):115-121
  • 6Hu S M,Wang G J,Jin T G.Properties of two types of generalized Ball curves[J].Computer-Aided Design,1996,28(2):125-133
  • 7Morin G,Goldman R.On the smooth convergence of subdivision and degree elevation for Bézier curves[J].Computer Aided Geometric Design,2001,18(7):657-666
  • 8Jena M K,Shunmugaraj P,Das P C.A subdivision algorithm for generalized Bernstein-Bézier curves[J].Computer Aided Geometric Design,2001,18(7):673-698
  • 9汪志华朱晓临.B6zier曲线与两类广义Ball曲线的统一表示[C]//第四届全国几何设计与计算学术会议,厦门,2009:13-16.
  • 10Ball A A. CONSURF, part 1: introduction of the conic lofting tile [J]. Corcputer Aided Design, 1974, 6 ( 4 ) 243-246.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部