期刊文献+

制备空间光机结构件的高体份SiC/Al复合材料 被引量:36

High volume fraction SiC/Al composites for space-based optomechanical structures
在线阅读 下载PDF
导出
摘要 采用无压浸渗复合新方法和自行研制的专用工艺设备,低成本地制备了用作空间光机结构件的高体份(55%~57%)SiC/Al复合材料大尺寸坯锭,并对其微观结构特征、基本的力学及热物理性能和断裂机制予以表征。此外,还通过线切割、电火花成型等特种加工手段将该种复合材料制造成反射镜背板、焦面板等一系列空间光机结构用典型样件。研究结果表明,该材料既有优异的结构承载功能(弹性模量213GPa,而比模量则比铝合金、钛合金及钢高出近两倍),又有卓越的热控功能(其热膨胀系数比钛合金还要低,热导率接近纯铝,达到235W/m·K),若以其替代钛合金用于空间光机结构可望获得显著的轻量化效果并降低热控负荷、改善热控效果。 Using the special self-manufactured processing equipment, we fabricated the aluminium matrix composites with high volume fraction (55%~57%) SiC particles based on a novel pressureless infiltration fabrication technology. The microstructures, mechanical and physical properties, fracture mechanism of the composites were characterized. Additionally, several kinds of typical optomechanical components for space-based optical systems were produced successfully by means of electromachining (such as wire electrical discharge), grinding , abrading, etc. The investigation reveals that the composites have good mechanical properties, such as ultra-high modulus (the Young’s modulus is 213 GPa, the specific modulus is approximately as three times as Al, Ti, and steel), as well as prominent thermal management function(low thermal expansion coefficient (8 × 10^-6 K^-1), and very high thermal conductivity (235 W/m · K)). Experimental results show that the new multi-function and lightweight SiC/Al composites can be used in the optomechanical systems in the space field to improve greatly the thermal management effect and to sharply decrease the whole weight of the space-based optomechanic structure.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2007年第8期1175-1180,共6页 Optics and Precision Engineering
基金 航空基金资助项目(No.03G21012) 武器装备预研基金资助项目(No.51412010304HK5106 No.51460040204ZK1001)
关键词 SIC/AL复合材料 高体份 无压浸渗 空间光机结构 SiC/Al composite high volume fraction pressureless infiltration space-based optomechanical structure
  • 相关文献

参考文献9

  • 1SUNGHO J.Advances in thermal management materials for electronic applications[J].JOM,1998,6:46.
  • 2MARUYAMA B,HUNT W H.Discontinuously reinforced aluminium:current status and future direction[J].JOM,1999,11:59-61.
  • 3ZWEBEN C.Advances in composite materials for thermal management in electronic packaging[J].JOM,1998,6:47-51.
  • 4ZWEBEN C.Metal-Matrix composites for electronic packaging[J].JOM,1992,7:15-24.
  • 5Lanxide Electronic Components,Inc.LEC property and products[C/OL].1999,6,http:// www.lec-inc.com.
  • 6RAWAL S.Metal-Matrix composites for space applications[J].JOM,2001,4:14-17.51.
  • 7KUNZE J M,BAMPTON C C.Challenges to developing and producing MMCs for space applications[J].JOM,2001,4:22-25.
  • 8崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,30(6):3-6. 被引量:229
  • 9ZUFIA A,HAND R J.The production of Al-Mg alloy/SiC metal matrix composites by pressureless infiltration[J].Journal of Materials Science,2002,37(5):955-961.

二级参考文献9

  • 1陈亚莉.美国F-22先进战斗机选材分析.航空信息研究报告,YH95016-00400[M].,1995..
  • 2H Liu B.Michel.-[J].材料研究学报,1995,9:561-571.
  • 3张迎久.-[J].材料导报,1997,11(3):52-56.
  • 4李义春.-[J].材料研究学报,1995,9:555-559.
  • 5中国航空信息中心.1996年世界国防科技与武器装备发展动态(三)[M].,1997.58.
  • 6丁立铭 饶勤 等.F-22战斗机选材与制造技术.航空信息研究报告[M].,1996,6.25-26.
  • 7崔岩 张少卿.2000年材料科学与工程进展[M].北京:冶金工业出版社,2001.1591-1594.
  • 8乌崇德,傅丹鹰,益小苏.空间光学遥感器的发展对先进复合材料的需求[J].宇航材料工艺,1999,29(4):11-15. 被引量:16
  • 9崔岩,史文方.SiCp/Al复合材料界面控制与评价新方法[J].航空学报,2000,21(6):571-574. 被引量:11

共引文献228

同被引文献338

引证文献36

二级引证文献203

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部