摘要
在局部凸Hausdorff拓扑向量空间中,研究了集值优化问题的强有效解.首先,在广义锥次似凸集值映射下,获得了集值优化问题的强有效解的标量化的特性,最后,获得了带广义不等式约束集值优化问题的强有效解的La-grange型最优性条件.
In locally convex Hausdorff topological vector spaces, strongly efficient solutions for the set-valued optimization were discussed. Under the generalized cone-subconvexlike set-valued maps, characterizations of scalarization for strongly efficient solutions of set-valued optimization are obtained. Then, Lagrange type optimality conditions for strongly efficient solutions of the set-valued optimization with generalized inequality constraints are obtained.
出处
《重庆交通大学学报(自然科学版)》
CAS
2007年第4期162-165,共4页
Journal of Chongqing Jiaotong University(Natural Science)
基金
重庆交通大学青年科学基金课题(2006-026)
关键词
集值优化
强有效解
标量化
Lagrange型最优性条件
set-valued optimization
strongly efficient solutions
scalarization
Lagrange type optimality conditions