期刊文献+

特征提取及其在电子鼻对可燃液体识别中的应用 被引量:3

Feature extraction and its application in recognizing of flammable liquids with electronic nose
在线阅读 下载PDF
导出
摘要 利用6只TGS传感器组成的阵列对4种常见的易燃液体和3种不可燃饮料进行测试,并选用4种有代表性的特征提取方法,主元分析法(PCA)、Fisher判别法(FDA)、自组织映射(SOM)、Sammon映射法(Sammon map)作为数据预处理方法,并用3种模式识别方法对预处理后的数据进行识别。结果表明:在各种特征提取方法的处理下,可燃类和不可燃类样本都能被准确地区分,而只有在有导师的特征提取方法才能有效地识别各个可燃液体类子类和不可燃液体类子类的样本类别,最佳的投影维数与各特征提取方法有密切联系,而最优的模式识别方法则与数据的分布有关。 Six TGS sensor array used to identify four common flammable liquids and three kinds of drink with four typical feature extraction techniques and three pattern recognition methods are reported. The four feature extraction techniques involve principle component analysis (PCA), Fisher discriminant analysis (FDA), self-organizing mapping (SOM) and Sammon map. The result shows that the flammable species and the incombustible species can be well distinguished under each of the four feature extraction methods ,while the species of samples can only be well identified under the method of FDA. The best dimension of object space depends on the feature extraction techniques,while the best pattern recognition technique has close relationship with the data sets.
出处 《传感器与微系统》 CSCD 北大核心 2007年第8期108-110,113,共4页 Transducer and Microsystem Technologies
关键词 易燃液体 电子鼻 特征提取 降维 模式识别 flammable liquids electronic nose feature extraction dimensionality reduction pattern recognition
  • 相关文献

参考文献11

  • 1Nicole Barie, Mark Bricking. A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring [ J ]. Sensors and Actuators B, 2006, ( 114 ) :482 --488.
  • 2Gardner J W,Shin H W. An electronic nose system to diagnose illness [ J ]. Sensors and Actuators B ,2000 (70) : 19 --24.
  • 3Martyna Kuske,Anne-Claude Romain. Microbial volatile organic compounds as indicators of fungi: can an electronic nose detect fungi in indoor environments [ J ]. Building and Environment, 2005 (40) :824 --831.
  • 4Aaron Norman, Frank Stam. Packaging effects of a novel explosion-proof gas sensor[ J]. Sensors and Actuators B,2003 (95) : 287 --290.
  • 5Young R C, Buttner W J. Electronic nose for space program applications [ J ]. Sensors and Actuators B,2003 ( 93 ) : 7 -- 16.
  • 6Wang Xuechuan,Paliwal K K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition [ J ]. Pattern Recognition ,2003 (36) :2429 --2439.
  • 7宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 8Garcia M, Aleixandre M, Gutierrez J. Electronic nose for wine discrimination[J]. Sensors and Actuators B,2006 ( 113 ) :911 --916.
  • 9Sylvie Roussel, Guastaf Forsberg, Vincent Steinmetz. Optimisation of electronic nose mea-surements. Part I : methodology of output feature selection [ J ]. Journal of Food Engineering, 1998 ( 37 ) : 207 --222.
  • 10Duda R O, Hart P E, Stork D G. Pattern classification [ M]. 2th ed. New York : Wiley ,2001:96 --102.

二级参考文献36

  • 1宣国荣,柴佩琪.基于Chernoff上界的特征选择[J].模式识别与人工智能,1996,9(1):26-30. 被引量:2
  • 2刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 3宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 4Wiener E., Pedersen J.O., Weigend A.S.. A neural network approach to topic spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, 1995, 317~332
  • 5Haykin Smon. Neural Networks: A Comprehensive Foundation. Second Edition. Beijing: Tsinghua University Press, 2001
  • 6Scholkopf B., Smola A., Mulle K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Max-Planck-Institute, Germany: Technical Report No. 44, 1996
  • 7Yang Jian, Frangi Alejandro F., Yang Jing-Yu, Zhang David, Jin Zhong. KPCA plus lda: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230~244
  • 8Yang Yi-Ming. An evaluation of statistical approaches to text categorization. Information Retrieval, 1999, 1(1~2): 69~90
  • 9Sebastiani F.. Machine learning in automated text categorization. ACM Computing Surveys, 2002, 34(1): 1~47
  • 10Lewis D.. Reuters Collection. http://www.research.att.com/~lewis/reuters21578.html

共引文献43

同被引文献40

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部