期刊文献+

解带Robin边界条件的变分不等式的区域分解算法

Domain Decomposition Method for Variational Inequalities with Robin Boundary Condition
在线阅读 下载PDF
导出
摘要 针对一类带Robin边界条件的椭圆型变分不等式问题,构造基于Robin内边界传输条件的非重叠加性区域分解算法,并建立了算法的收敛性。这类区域分解算法广泛应用于求解偏微分方程边值问题并取得了一系列收敛性结果。数值结果表明,基于Robin边界传输条件的区域分解法可通过调节内边界传输条件中的Robin参数,来加快算法的收敛速度。 Nonoverlapping additive domain decomposition method for a kind of elliptic variational inequalities with Robin boundary condition was developed and analyzed. In the method, the unknown values at the common interface between adjacent subdomains were updated by Robin transmission conditions. Convergence was established for the proposed methods This kind of domain decomposition methods have been widely used to solve the boundary value problems of partial differential equation and many convergence theorems have been obtianed. Numerical experiments appeared that a greater acceleration of the method could be obtained by choosing the Robin parameter suitably.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3949-3950,4048,共3页 Journal of System Simulation
基金 国家973项目(2004CB719402) 国家自然科学基金项目(10671060)
关键词 Robin条件 区域分解算法 变分不等式 收敛性 Robin condition domain decomposition variational inequalities convergence
  • 相关文献

参考文献12

  • 1亓文果,金先龙,张晓云,李渊印,李根国.汽车碰撞有限元仿真的并行计算及其性能研究[J].系统仿真学报,2004,16(11):2428-2431. 被引量:19
  • 2A Quarteroni, A Valli. Domain Decomposition Methods for Partial Differential Equations [M]. New York: Oxford University Press, 1999.
  • 3Y Kuznetsov, P Neittaamaki, P Tarvainen. Schwarz Methods for Obstacle Problem [J]. East-West J. Numer. Math. (S0928-0200), 2001, 9(3): 233-252.
  • 4P L Lions. On the Schwarz Alternating Method I [C]//R Glowinski, G H Golub, G A Meurant, et al. Proceedings of Domain Decomposition Method. Philadelphia: SIAM, 1988: 1-40.
  • 5L Badea, X Tai, J Wang. Convergence Rate Analysis of A Multiplicative Schwarz Method for Variational Inequalities [J]. SIAM J. Numer. Anal.(S0036-1429), 2003, 41(3): 1052-1073.
  • 6L Badea, J Wang. An Additive Schwarz Method for Variational Inequalities [J]. Math. Comput. (S0025-5718), 2000, 69(232): 1341-1354.
  • 7X Tai. Rate of Convergence for Some Constraint Decomposition Methods for Nonlinear Variational Inequalities [J]. Numer. Math.(S0029-599X), 2003, 93(4): 755-786.
  • 8P L Lions. On the Schwarz Alternating Method III [C]//T F Chan, R Glowinski, J Pariaux, et al. Third International Symposium on Domain Decomposition Methods. Philadelphia: SIAM, 1990: 202-223.
  • 9C Li, J Zeng, S Zhou. Convergence Analysis of Generalized Schwarz Algorithms for Solving Obstacle Problems with T-monotone Operator [J]. Comput. Math. Appl. (S0898-1221), 2004, 48(3): 373-386.
  • 10J Zeng, S Zhou. On Monotone and Geometric Convergence of Schwarz Methods for Two-sided Obstacle Problems [J]. SIAM J. Numer. Anal. (S0036-1429), 1998, 35(2): 600-616.

二级参考文献9

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部