期刊文献+

应用粒子滤波及先验概率模型进行图像分割的新算法 被引量:2

A New Algorithm for Image Segmenting by Using SMC and Prior Probability Model
在线阅读 下载PDF
导出
摘要 基于粒子滤波在非线性非高斯情况下具有较好的预测结果,本文提出了一种自适应背景图像分割新算法,该算法利用粒子滤波对下一帧的前景区域进行预测,进而计算出下一帧各像素点属于背景的概率以指导下一帧图像分割;在前景像素值与背景像素值相近的情况下利用先验知识进行图像分割是一种较好的方法,本文以粒子滤波预测结果与先验概率模型计算结果的均值作为当前像素点属于背景的概率来进行图像分割,实验结果表明,该方法在背景变化范围较大的情况下,可以减少前景点误分割为背景点的概率. A new adaptive algorithm is proposed by taken advantage of SMC (Sequential Monte Carlo) which have better predictive results under the condition of nonlinear non-Gaussian. The algorithm uses particle filtering to predict an anticipated fore-ground district for a coming flame. Moreover, it calculates the probability of pixels to be part of background in the coming frame to guide image segmentation. It is a good method to segment image on the setting where the pixel values of foreground similar to the ones of the background by using prior knowledge. This paper uses the probability of pixels to be part of background which is calculated by the average of the predict results of particle filtering and the calculated results of prior probability model to segment image. Experimental results show that the proposed algorithm can reduce the error of the pixels of foreground to be segmented as pixels of background compared with 3σ rule when changes in background occur quickly.
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第8期1533-1537,1547,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60573079No.60673093) 长江学者和创新团队发展计划 怀化学院计算机应用技术重点学科项目
关键词 粒子滤波 先验概率 自适应分割 运动检测 高斯模型 SMC(Sequential Monte Carlo) prior probability adaptive segmentation movement detection Gaussian model
  • 相关文献

参考文献14

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:277
  • 2S J McKenna, Y Raja, S Gong. Tracking colour objects using adaptive mixture models [ J]. Image and Vision Computing, 1999,17(2) :225 - 231.
  • 3McKenna Setal. Tracking groups of people[ J]. Computer Vision and Image Understanding,2000,80( 1 ) :42 - 56.
  • 4G Doretto, A Chiuso, Y N Wu, S Soatto. Dynamic textures[ J ]. International Journal on Computer Vision ( IJCV ), 2003,51 (2) : 91 - 109.
  • 5A Monnet,A Mittal,N Paragios, V Ramesh. Back-ground modeling and subtraction of dynamic scenes[ A]. Proceedings of International Conference on Computer Vision (ICCV) [ C ]. Nice, France,2003.1305 - 1312.
  • 6J Zhung,S Sclaroff. Segmenting foreground objects from a dynamic textttred background via a robust Kalman Filter[A]. Proceedings of International Conference on Computer Vision (ICCV) [C]. Nice, France, 2003.44 - 50.
  • 7Wren C, Azarbayejani A, Darrell T. Pfinder. Real-time tracking of the human body[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19(7) :780 - 785.
  • 8K Konolige. Small vision systems:Hardware and implementation [ A ] .Eighth Intl Symposium on Robotics Research[ C]. Hayama, Japan, 1997. 111 - 116.
  • 9G Gordon, T Darrell, M Harville, Woodfill. Background estimation and removal based on range and color[A] .Proceedings of IEEE 1999 Computer Vision and Pattern Recognition ( CVPR' 99) [C].Ft. Collins, CO,USA, 1999.459 - 464.
  • 10Gordon N J, Salmond D J, Smith A FM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IEEE proceedings-F, 1993,140(2) : 107 - 113.

二级参考文献117

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献288

同被引文献19

  • 1姚齐国.基于MATLAB的数字滤波器的设计[J].江西理工大学学报,2006,27(1):50-52. 被引量:6
  • 2刘维亭,戴晓强,朱志宇.基于重要性重采样粒子滤波器的机动目标跟踪方法[J].江苏科技大学学报(自然科学版),2007,21(1):37-41. 被引量:7
  • 3MAHEUX J, CRUICKSHANK J, SEVIGNY L. Video rate image stabilization system [J]. SPIE, 1998, 34(14): 232-240.
  • 4RATAKONDA K. Real-time digital video stabilization for multi-media applications[J]. IEEE, 1998, 4:69-72.
  • 5KINUGASA T, YAMAMOTO N, KOMATSU H, et al.. Electronic image stabilizer for video camera use [J]. IEEE Trans. on Consumer Electronic, 1990, 36(8) :520-524.
  • 6MORIMOTO C, CHELLAPPA R. Fast electronic digital image stabilization 13th International Conf. 1996, 3:284 288. [J]. IEEE Proceedings on Pattern Recognition,
  • 7钟平.机载电子稳像技术研究[D.中国科学研究生院,2003.
  • 8DOUCET A, CORDON N: KRISHNAMURTHY V. Particle filters for state estimation of jump markov linear systems [J]. IEEE Transactions on Signal Processing, 2001,49:613-624.
  • 9TRANTER W H, SAMSHANMUGAN K, RAPPAPORT T S, et al. Principles of communication systems simulation with wireles applications [M] New Jersey: Professional Technical Reference Upper Saddle River, 2003.
  • 10杨柳,张宝亮,赵建,张瑞忠.基于改进粒子滤波算法的人体运动跟踪[J].电子技术应用,2007,33(11):74-76. 被引量:2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部