期刊文献+

基于可见/近红外光谱技术的茄子叶片灰霉病早期检测研究 被引量:38

EARLY DETECTION OF GRAY MOLD(CINEREA) ON EGGPLANT LEAVES BASED ON VIS/NEAR INFRARED SPECTRA
在线阅读 下载PDF
导出
摘要 应用可见/近红外光谱技术对茄子叶片进行灰霉病害还未在叶片表面出现病症时的早期检测.采用化学计量学方法建立早期检测模型.主成分分析用于对光谱数据进行降维,得到若干个最重要的主成分.但直接从聚类图中无法进行是否染病的鉴别.因而将其作为变量输入BP神经网络,从而减少了计算量,提高了建模精度.检测结果显示,模型具有良好的检测效果,能够达到100%的识别率,正确率也能达到88%.说明运用可见/近红外光谱技术能够实现当病症还未在叶片表面出现时的快速准确的早期检测,为灰霉病早期检测提供了新的途径. Visible and near-infrared reflectance spectroscopy (Vis/NIRS) technique was applied in the early detection of grey mold (einerea) on eggplant leaves while the symptom had not appeared. Chemometries was used to build the early detection model. In order to decrease the amount of calculation and improving the accuracy, principle component analysis (PCA) was executed to reduce numerous wavebands into several principle components (PCs) as input variables of BPNNS while the PCs plot of three primary PCs was failed. The performance of the BPNNS model is good with 100% recognition rate and 88% correct rate. Thus, it is concluded that the spectra technology is an available one for the early detection of grey mold on eggplant leaves while the symptom has not appeared and it provides a new method for the early detection of grey mold.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2007年第4期269-273,共5页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60605011) 国家十一五科技支撑计划项目(2006BAD10A04) 高等学校博士学科点专项科研基金课题(20040335034) 浙江省重大科技攻关(2005C12029)资助项目
关键词 可见/近红外光谱 灰霉病 主成分分析 BP神经网络 Vis/near infrared spectroscopy grey mold (Cinerea) principal component analysis (PCA) BP neural networks (BPNNS)
  • 相关文献

参考文献13

  • 1O'Neill T M,Shtienberg D,Elad Y.Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea[J].Plant Disease,1997,81(1):36-40.
  • 2Putnam M L.Evaluation of selected methods of plant disease diagnosis[J].Crop protection,1995 14(6):517-525.
  • 3Fox R T.The present and future use of technology to detect plant pathogens to guide disease control in sustainable farming systems[J].Agricuture,Ecosystems and Enviroment,1997,64(2):125-132.
  • 4熊雪梅,姬长英,Claudio Moraga.基于参数化遗传神经网络的植物病害预测方法[J].农业机械学报,2004,35(6):110-114. 被引量:12
  • 5Gómez H A,HE Yong,Pereira G A.Non-Destructive measurement of acidity,soluble solids and firmness of satsuma mandarin using Vis/NIR-Spectroscopy techniques[J].Journal of Food Engineering,2006,77(2):313-319.
  • 6何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 7Esteban-Diez I,Gonzalez-Saiz J M,Pizarro C.An evaluation of orthogonal signal correction methods for the characterisation of arabica and robusta coffee varieties by NIRS[J].Analytica Chimica Acta,2004,514(1):57 -67.
  • 8黄敏,何勇,黄凌霞,楼程富.基于可见—近红外光谱技术的家蚕蚕种鉴别方法的研究[J].红外与毫米波学报,2006,25(5):342-344. 被引量:19
  • 9Kokaly R F,Clark R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple liner regression[J].Remote Sensing of Environment,1999,67 (3):267-287.
  • 10Rencet A N,Nemeth J.Defection of mountain pine beetle infection using landsat MSS and simulated thematic mapper data.canadian[J].Journal of Remote Sensing,1985,11(1):50-58.

二级参考文献33

  • 1邢俊,邹集英.气象条件对露地黄瓜霜霉病流行影响的分析[J].内蒙古农牧学院学报,1993,14(2):37-42. 被引量:5
  • 2尹球,疏小舟,徐兆安,匡定波.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-430. 被引量:32
  • 3郏东耀,丁天怀.利用纤维红外吸收特性的皮棉杂质检测新方法[J].红外与毫米波学报,2005,24(2):147-150. 被引量:24
  • 4何勇,李晓丽.用近红外光谱鉴别杨梅品种的研究[J].红外与毫米波学报,2006,25(3):192-194. 被引量:65
  • 5[1]Marcus Stavos Stefanou, Richard c Olsen, Herschel H Loomis. Signal Perspectives of Hyperspectral Imagery Analysis Techniques[R], 1998, AD-A333 254.
  • 6[2]Dimitris Manolakis, Chrisitina Siracusa, David Marden, et al. Hyperspectral adaptive matched filter detectors:Practical performance comparison[J]. SPIE, 2001, 4381: 18-33.
  • 7[3]Joseph C Harsanyi, CheinI Chang. Hyperspectral image classifacation and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Trans. On Geoscience and Remote sensing, 1994, 32(4): 779-785.
  • 8[4]Schaum A. Spectral subspace matched filtering[J]. SPIE, 2001, 4381: 1-17.
  • 9[5]David Gillis, Peter Palmadesso, Jeffrey Bowles. An automatic target recognition system for hyperspectral imagery using ORASIS[J]. SPIE, 2001, 4381: 34-43.
  • 10[6]Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(7): 29-43.

共引文献110

同被引文献719

引证文献38

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部