摘要
考虑策略工作休假M/M/1排队,简记为M/M/1(N-WV)。在休假期间,服务员并未完全停止工作而是以较低的速率为顾客服务。用拟生灭过程和矩阵几何解方法,我们给出了有直观概率意义的稳态队长和稳态条件等待时间的分布。此外,我们也得到了队长和等待时间的条件随机分解结构及附加队长和附加延迟的分布。
Consider an M/M/1 queue with working vacations and-policy, and we have M/M/1(N-WV) in short. The server works at a lower rate rather than completely stops during a vacation period. Using quasl-birth-and-death process and matrix-geometric solution method, we gain concise expressions of the steady-state distributions for queue length and conditional waiting time which have intuitive probabilistic sense. Furthermore, we indicate the conditional stochastic decomposition structures of queue length and waiting time in the stationary state and obtain the distributions for additional queue length and additional delay.
出处
《运筹与管理》
CSCD
2007年第4期50-55,共6页
Operations Research and Management Science
基金
国家自然科学基金资助项目(10671170)
关键词
运筹学
工作休假N
策略
拟生灭过程和矩阵几何解
条件随机分解
M/M/1排队.
operational research
working vacations and N-policy
quasi-birth-and-death process and matrix-geometric solution
conditional stochastic decomposition
M/M/1 queue