期刊文献+

智能视觉监控技术研究进展 被引量:82

Intelligent Visual Surveillance Technology:A Survey
在线阅读 下载PDF
导出
摘要 新一代智能视觉监控技术的研究是一个极具挑战性的前沿课题,它旨在赋予监控系统观察分析场景内容的能力,实现监控的自动化和智能化,因而具有巨大的应用潜力。视觉监控系统的智能化分析过程由运动目标检测、分类、跟踪和视频内容分析等几个基本环节组成,其中视频内容分析又包括异常检测、人的身份识别以及视频内容理解描述等。本文在总结以上有关关键技术研究进展的基础上,进一步提出将超分辨率复原技术引入视觉监控领域,介绍了超分辨率复原的主要算法及其在智能视觉监控中的应用。 The research on new generation of Intelligent Visual Surveillance is a new arising font field with many challenges. It aims to endow surveillance systems with the ability of analyzing scene contents, make surveillance tasks fulfilled automatically and intelligently, which has a large potential of application. There are four main issues in the process of intelligent analysis of typical visual surveillance system, detection, classification, tracking of objects and analysis of video contents. According to the real applications, video contents analysis can he abnormal detection, person recognition, understanding and description of video contents etc. In this paper, in addition to make a survey on the research progresses of the key technologies of visual surveillance, the concept of super resolution restoration is further introduced to this field to enhance the quality of the surveillance sequence. The main algorithms of super resolution restoration and its applications in visual surveillance are discussed in detail.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第9期1505-1514,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(90304001 60472036) 北京市自然科学基金项目(4052007) 武器装备预研基金项目(51434050105QT0101) 北京市教委基金项目(KM200410005022) 北京市科技新星计划基金项目(2005B08)
关键词 智能视觉监控 目标检测 目标跟踪 步态识别 行为理解和描述 intelligent visual surveillance, object detection, object tracking, gait recognition, video content understanding and description
  • 相关文献

参考文献58

  • 1Green Mary W.The Application and Effective Use of Security Technologies in U.S.Schools:A Guide for Schools and Law Enforcement Agencies[ R ].NCJ 178625,Washington DC,USA:National Institute of Justice,U.S.Department of Justice,1999.
  • 2Hu Wei-ming,Tan Tie-niu,Steve Maybank.A survey on visual surveillance of object motion and behaviors[ J].IEEE Transactions on Systems,Man and Cybernetics-Part C:Applications and Reviews,2004,34(3):334-352.
  • 3Stauffer Chris,Grimson W E L.Adaptive background mixture models for real-time tracking[ A].In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vol.2[ C ],Colorado,USA,1999:1063-1069.
  • 4刘亚,艾海舟,徐光佑.一种基于背景模型的运动目标检测与跟踪算法[J].信息与控制,2002,31(4):315-319. 被引量:141
  • 5Karmann Klaus-Peter,Brandt Achim Von.Moving object recognition using an adaptive background memory[ A].In:Cappellini Ⅴ.Time-Varying Image Processing and Moving Object Recognition[ C ],2,Elsevier,Amsterdam,The Netherlands,1990:289-296.
  • 6Kilger M.A shadow handler in a video-based real-time traffic monitoring system[ A ].In:Proceedings of IEEE Workshop on Applications of Computer Vision[ C ],California,USA,1992:11-18.
  • 7Haritaoglu Ismail,Harwood David,Davis Larry S.W4:who? when?where? what? a real time system for detecting and tracking people[A].In:Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition[ C ],Nara,Japan,1998:222-227.
  • 8Jain R,Nagel H H.On the analysis of accumulative difference of picture from image sequences of real world scenes[ J ].IEEE Transactions on Pattern Analysis and Machine Intelligence,1979,PAMI-1 (1):206-214.
  • 9王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 10Horn Berthold K P,Schunck Brain G.Determining optical flow[J].Artificial Intelligence,1981,17 (1-3):185-203.

二级参考文献50

  • 1C Wren, A Azarbayejani, T Darrell, A Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Trans. PAMI, 1997,19(7):780~785
  • 2T Olson, F Brill. Moving Object Detection and Event Recognition Algorithms for Smart Cameras. Proc. DARPA Image Understanding Workshop, May 1997
  • 3I Haritaoglu, D Harwood, L S Davis. W4: Rea-Time Surveillance of People and Their Activities. IEEE Trans. PAMI, 2000,22(8):809~830
  • 4C Stauffer, W E L Grimson. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. PAMI, 2000,22(8):747~757
  • 5R T Collins, A J Lipton, T Kanade. A System for Video Surveillance and Monitoring. Proc. Am. Nuclear Soc.(ANS) Eighth Int'l Topical Meeting Robotic and Remote Systems, Apr. 1999
  • 6C Anderson, P Burt, G Can der Wal. Change Detection and Tracking Using Pyramid Transformatin techniques. Proc. SPIE-Intelligent Robots and Computer Vision, 1985,(579):72~78
  • 7J Barron, D Fleet, S Beauchemin. Performance of Optical Flow Techniques", International Journal of Computer Vision, 1994,12(1):42~77
  • 8A M Tekalp. Digital Video Processing. Rochester, NY, 1995
  • 9F Liu, R W Picard. Finding Periodicity in Space and Time. Proc. Int'l Conf. Computer Vision, 1998,376~383
  • 10Javed O, Shah M. Tracking and object classification for automated surveillance [A]. Proceedings of the 7th European Conference on Computer Vision [ C ]. Berlin, Germany: Springer-Verlag, 2002. 343 ~ 357.

共引文献316

同被引文献577

引证文献82

二级引证文献874

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部