期刊文献+

气动伺服位置系统的神经网络辨识及控制 被引量:2

The Neural Network Identification & Control of Pneumatic Servo Position System
在线阅读 下载PDF
导出
摘要 针对传统控制器对数学模型依赖的缺点,利用神经网络具有逼近任意非线性函数的优点,采用RBF算法,对气动伺服位置系统模型进行参数辨识,结果证明行之有效。这种具有控制与辨识功能的方法为非线性系统的参数确认和优化控制提供了新的途径。
出处 《液压与气动》 北大核心 2007年第9期50-52,共3页 Chinese Hydraulics & Pneumatics
  • 相关文献

参考文献2

二级参考文献11

  • 1Auziner W, Stetter H J. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations[J]. Series of Number Math, 1988,(86):11-30.
  • 2Rumelhart D E, Hinton G E,Williams R J. Learning Internal representations by error propagation in parallel distributed processing[M]. Gambridgef:MIT Press, 1986.318-362.
  • 3Huang S H, Zhang H C. Artificial neural network in manufacturing:concepts,applications,and perspectives[J]. IEEE Transaction on Components,Packaging and Manufacturing Technology, 1994,17(2):212-228.
  • 4Rumelhart D E, Hinton G E. Learning internal representations by back-propagation error[J]. Nature,1986, 323(9):533-536.
  • 5Magnitskii N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling, 2001,12(4):293-304.
  • 6Guh R S, Tannock J D T. A neural network approach to characterize pattern parameters in process control charts[J]. Journal of Intelligent Manufacturing, 1999,10(5):449-46.
  • 7Alexander G P,Bentito F A. An accelerated learning algorithm for multi-layer perceptron network[J]. IEEE Trans on Neural Networks, 1994,5(3):493-497.
  • 8王琦.气动机械人电-气位置伺服系统研究[D].哈尔滨:哈尔滨工业大学,1998.
  • 9Derrick Nguyen, Bernard Widrow. Neural networks for self- Learning Control System [ J]. IEEE Control System Magazine, 1999(10).
  • 10侯祥林,陈长征,虞和济,王铁光,纪盛青.神经网络权值和阈值的优化方法[J].东北大学学报(自然科学版),1999,20(4):447-450. 被引量:49

共引文献38

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部