期刊文献+

Chen系统及其混沌控制的研究 被引量:3

Study of Chen System and Its Chaos Control
在线阅读 下载PDF
导出
摘要 研究Chen系统的混沌运动,通过理论分析与数值计算分析系统基本动力学性质,并通过系统相图、全局分岔图与Lyapunov指数图分析该Chen混沌系统动力学行为.然后利用x|x|控制法、恒定外激励控制法对该混沌系统进行控制,将该混沌系统稳定到稳定的周期轨道上. The Chaos motion of Chen system is studied, and the dynamic character of this system is analysed by theory analysis and numerical calculation. By applying phase diagram global bifurcation diagram and Lyapunov exponent diagram, the character of chaos system and its dynamic behavior are analyzed. At last, the chaos system orbit can be controlled to its stable period orbit with x |x| controlling and constant outsides excitation controlling methods.
出处 《兰州交通大学学报》 CAS 2007年第4期151-154,共4页 Journal of Lanzhou Jiaotong University
基金 甘肃省自然科学基金项目(3ZS-051-A25-030 3ZS-042-B25-049) 兰州交通大学大学生科研基金项目(DXS-07-0026)
关键词 混沌 分岔 混沌控制 LYAPUNOV指数 吸引子 chaos bifurcation chaos controlling Lyapunov exponents attractors
  • 相关文献

参考文献9

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys. Rev. Lett, 1990,64:1 196-1 199.
  • 2Poon L, Grebog C. Controlling complexity[J]. Phys. Rev. Lett., 1995, (75):4 023-4 028.
  • 3Ditto W L, Pecora L M. Mastering chaos[J]. Scientific American, 1993,269(2):62-70.
  • 4Chen G,Ueta T. Yet another chaotic attractor[J]. Int. J. of Bifur. Chaos, 1999,9(6): 1 465-1 466.
  • 5Lu J, Chen G. A new chaotic attractor coined[J]. Int. J. Bifurc, Chaos, 2002,12(3) : 659-661.
  • 6Ueta T,Chen G R. Bifurcation analysis of Chen's equation[J]. Int. J. Bifurcation and Chaos,2000,10(8): 1 917-1 931.
  • 7Vanecek, Celikovsky S. Control systems: from linear analysis to synthesis of chaos [M]. London. Pretice-Hall, 1996.
  • 8黄报星.延迟微分反馈法控制混沌[J].吉林大学学报(信息科学版),2003,21(4):362-365. 被引量:4
  • 9耿淑娟,刘孝贤.混沌控制的基本问题和方法(一)[J].山东科学,2003,16(2):40-44. 被引量:28

二级参考文献20

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2吕新虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.202—204.
  • 3Ott E, Grebogi C, York J. Controlling chaos [J]. Phys Lett, 1990, 64:1 196-1 199.
  • 4Ditto W D, Rauseo S N, Spano M L. Experimental control of chaos [J]. Phys Rev Lett, 1990, 65: 3 211-3 214.
  • 5Chen G R, Dong Xo From Chaos to Order: Methodologies, Perspectives and Applications [M]. Singapore: World Scientific, 1998.
  • 6Lü JinHu, Chen G and Zhang S. Bridge the Gap Between the Lorenz System and the Chen System [J]. Int J of Bifurcation and Chaos, 2002, 12 (12): 2 917-2 926.
  • 7Agiza H N. Controlling chaos for the dynamical system of coupled dynamos[J]. Chaos Solitons and Fractals, 2000, 13:341-352.
  • 8Pyragas K. Continuours control of chaos by delayed self-controlling feedback [J]. Phys Lett A, 1992, 170: 421-428.
  • 9Lü JinHu Chen G Zhang S.Bridge the Gap Between the Lorenz System and the Chen System[J].Int J of Bifurcation and Chaos,2002,12(12):2-2.
  • 10Ott E Grebogi C, Yorke J A, Controlling chaos[J]. Phys, Rev Lett, 1990,64(1 1): 1196-1190.

共引文献30

同被引文献20

  • 1邱平,韩明君,王钢,王新志.扁球面网壳的混沌运动研究[J].力学与实践,2006,28(5):39-42. 被引量:7
  • 2Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems[J].Porg Theory Phys, 1983,69 : 32-47.
  • 3Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys. Rev. Lett, 1990,64 : 821-824.
  • 4Boutayeb M, Darouach M, Rafaralahyh. Generalized state-space observers for chaotic synchronization and secure communication[J]. IEEE Trans on Circuits and Systems, 2002,49(3) : 345-349.
  • 5Jiang Zhong-ping. Advanced feedback control of the chaotic Duffing equation[J]. IEEE Trans on Circuits and Systems, 2002,49 (2) : 244-249.
  • 6Lian K Y, Chiang T S, Chiu C S. Synthesis of fuzzy model--based designed to synchronization and secure communication for chaotic systems [J]. IEEE Trans Systems M and Cybernetics,2001,31(1) :66-83.
  • 7Celikovsky S, Chen G. On a generalized Lorenzeanonical form of ehaotie ystems[J].International Journal of Bifurcation and Chaos, 2002,12(8) : 1789-1812.
  • 8Stenflo. Equations Describing solitarty atmospheric waves[J]. Physica Scripta, 1991(6) : 599-600.
  • 9L Stenflo. C-eneralized lorenz equations for acousticgravity waves in the atmosphere[J]. Physica Scripta, 1996,53(1) :83-84.
  • 10[1]Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys Lett,1992,170 (A):421.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部