期刊文献+

米波雷达低仰角测高方法研究 被引量:1

Research on A Method of Measuring the Low Angle of Elevation for Metric Wave Radar
在线阅读 下载PDF
导出
摘要 针对米波雷达低仰角测高问题,提出米波雷达低仰角测高解决方案和基于遗传交替投影算法的最大似然超分辨方法。仿真结果表明该方法的有效性和可行性。 A scheme is presented in this paper aiming to make low-angle elevation measurement for metric wave radar, and.a Maximum Likelihood super-resolution method based on genetic algorithm and alternating projection algorithm is also presented to solve the low-angle elevation problem. Simulation results show that algorithm is efficient and feasible.
作者 强勇 茹伟
出处 《火控雷达技术》 2007年第3期11-14,40,共5页 Fire Control Radar Technology
关键词 米波雷达 遗传算法 最大似然 metric-wave radar genetic algorithm maximum likelihood
  • 相关文献

参考文献8

  • 1Merrill I.Skolnik主编,王军等译.雷达手册[M].北京:电子工业出版社.2004,11.
  • 2Litva, J. Use of a highly deterministic model in signal bearing estimation[J]. Electronics Letters, 1989,25(5).
  • 3Litva, J. New technique for low-angle radar tracking[J]. Electronics Letters, 1991,27(6):524-531.
  • 4赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523. 被引量:31
  • 5强勇,焦李成,保铮.用进化算法估计高频地波雷达海洋回波的DOA[J].自然科学进展,2004,14(9):1047-1052. 被引量:1
  • 6Yong Q. , Licheng J. , A Maximum likelihood Function Approach to Direction Estimation Based on Evolutionary Algorithms[C]. Fifth International Conference on Computational Intelligence and Multimedia Applications. Xi'an, China: 9,003, 9,7-31.
  • 7Z. , Michalewicz,Genetic Algorithms + Data Structures = Evolution Programs, 1996.
  • 8Ziskind I. , Wax M.. Maximum likelihood localization of multiple sources by alternating projection [J]. IEEE Transactions on Acoustics, Speech. 1988,36.1553 - 1560.

二级参考文献25

  • 1贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法[J].电子学报,1997,25(6):71-76. 被引量:17
  • 2[1]SHERMAN S M.Complex indicated angles applied to unresolved radar targets and multipath[J].IEEE Trans,1971,AES-7(1):160-170.
  • 3[2]WHITE W D.Low-angle radar tracking in the presence of multipath[J].IEEE Trans,1974,AES-10(6):835-852.
  • 4[3]TRUNK G V,et al.Bounds on elevation error estimates of a target in multipath[J].IEEE Trans,1979,AES-15(6):883-887.
  • 5[4]ZOLTOWSKI M,et al.Beamspace ML bearing estimation incorporating low-angle geometry[J].IEEE Trans,1991,AES-27(3):441-458.
  • 6[5]SCHMIT R.Multiple emitter location and signal parameter estimation[J].IEEE Trans,1986,AP-34(3):276-280.
  • 7[6]ZISKIND I,et al.Maximum likelihood localization of multiple sources by alternating projection[J].IEEE Trans,1988,ASSP-36(10):1553-1560.
  • 8[10]LI J,et al.Maximum likelihood angle estimation for signals with known waveforms[J].IEEE Trans,1993,SP-41(9):2850-2861.
  • 9[11]LI J,et al.Computationally efficient angle estimation for signals with known waveforms[J].IEEE Trans,1995,SP-43(9):2154-2163.
  • 10[12]ZHAO Y,et al.A new simplified temporal-spatial maximum likelihood algorithm for DOA estimation[A].6th International Conference on SP[C].Beijing:Posts & Telecom Press,2002.174-177.

共引文献30

同被引文献3

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部