期刊文献+

改进广义移动最小二乘近似的无网格法 被引量:7

Meshless Method with Modifying Generalized Moving Least Squares Approximation
在线阅读 下载PDF
导出
摘要 无网格法是求解微分方程定解问题的一种新数值方法。移动最小二乘近似只要求近似函数在各节点处的误差的平方和最小,对近似函数导数的误差没有任何约束。而广义移动最小二乘近似要求近似函数及其导数在所有节点处的误差的平方和最小。为了降低计算工作量,本文构造了要求近似函数在全部节点处和任意阶导数在部分节点处误差的平方和最小的改进广义移动最小二乘近似。数值计算显示本文提供的方法关于函数值和各阶导数值都具有很高的精度。 Meshless method is a new numerical method on problem for determining solution of differential equation. The moving least squares approximation makes only require least squares approximation with regard to functional value on all nodes. It makes no require for the residual of derivative approximation. However, the generalized moving least squares approximation makes require least squares approximation with regard to functional and its derivative value on all nodes. For the sake of decrease the computing time, modifying generalized moving least squares approximation was constructed under adding the residual of high orders derivative only on the portion nodes. The numerical examples show that the modifying generalized moving least squares approximation has high accuracy not only for function value but also first or higher orders derivatives.
作者 黄娟 姚林泉
出处 《力学季刊》 CSCD 北大核心 2007年第3期461-470,共10页 Chinese Quarterly of Mechanics
基金 国家自然科学基金项目(10672111) 江苏省自然科学基金(BK2006725) 暨南大学重点实验室基金
关键词 无网格法 移动最小二乘近似 广义移动最小二乘近似 meshless method, moving least squares approximation, generalized moving least squares approximation
  • 相关文献

参考文献7

  • 1Belytschko T,et al.Meshless method:An overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139:3-47.
  • 2Li Shaofan,Liu W K.Meshfree and particle methods and their applications[J].Applied Mechanics Review,2002,55:1-34.
  • 3Nayroles B,et al.Generalizing the finite element method:diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10:307-318.
  • 4Atluri S N,Cho J Y,Kim H G.Analysis of thin beams,using the meshless local Petrov-Galerkin method,with generalized moving least squares interpolations[J].Comput Mech,1999,24:334-347.
  • 5陈美娟,程玉民.改进的移动最小二乘法[J].力学季刊,2003,24(2):266-272. 被引量:34
  • 6娄路亮,曾攀.双材料界面裂纹应力强度因子的无网格分析[J].航空材料学报,2002,22(4):31-35. 被引量:37
  • 7S.铁摩辛柯,J.盖尔.材料力学[M].北京:科学出版社.1978.

二级参考文献11

  • 1WILLIAMS M L. The stress around a fault or crack in dissimilar media[J]. Bulletin of the Seismological Society of America, 1959,49 : 199-204.
  • 2CHEN M C, SZE K Y. A novel hybrid finite element analysis of bimaterial wedge problems [J]. Engineering Fracture Mechanics,2001,68 : 1463-1476.
  • 3CHRISTINA B, CHRISTER P. A numerical method for calculating stress intensity factors for interface cracks in bimaterials[J]. Engineering Fracture Mechanics, 2001,68:235-246.
  • 4PAN E,AMADEI B. Boundary element analysis of fraeture mechanics in anisotropic bimaterials[J]. EngineeringAnalysis with Boundary Elements, 1999,23:683-691.
  • 5BELYTSCHKO T, LU Y Y, GU L. Element-free galerkin method[J]. Int J Numer Methods Engrg,1994,37:229-256.
  • 6HELD M. Voronoi diagrams and offset curves of curvilinear polygons [J]. Computer-Aided Design, 1998, 30(4) :287-300.
  • 7HUANG H, KARDOMATEAS G A. Mixed-mode stress intensity factors for cracks located at or parallel to the interface in bimaterial half planes[J]. International Journal of Solids and Structures,2001,38:3719-3734.
  • 8FINLAYSON E F. Stress intensity factors distributions in bimaterial systems: A three-dimensional photoelastic investigation [D]. Virginia: Virginia Polytechnic Institute and State University, 1998.
  • 9SMELSER R E. Evaluation of stress intensity factors for bimaterial bodies using numerieal earek flank displacement data [J]. Int J Fracture, 1979, 15 : 135-143.
  • 10张明,姚振汉,杜庆华,楼志文.双材料界面裂纹应力强度因子的边界元分析[J].应用力学学报,1999,16(1):21-26. 被引量:15

共引文献76

同被引文献64

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部