期刊文献+

网络拓扑进化算法

Network topology evolving optimization
在线阅读 下载PDF
导出
摘要 借助拓扑进化网络描述生物进化的模型,设计出网络拓扑进化算法。算法的拓扑进化结构使其具有可变的种群规模,而进化中产生的新解提高了探测空间的能力。通过在算法中引入组合优化问题解的backbone概念,可以用解的相同部分来直观表示进化网络中单元(解)之间的联系。将连续变量转换成二进制编码后,以相同取值的二进制"位"表示解的相同部分,也可以用该算法求解连续函数优化问题。网络拓扑进化算法不规定解的变异方式,可以结合各种现有的技术,具有广泛的应用性。仿真实验表明算法具有较强的空间搜索能力。 Based on the model of topology evolving networks describing evolution,we designed Network Topology Evolving Opti- mization(NTEO ),which can automatically control the diversity of populations.The structure of topology evolving makes the popula- tion scale of NTEO variable,and the new solutions in the process of evolving enhance the exploration of problem space.The same parts of solutions may directly denote the relations of units (solutions) of evolving networks with the introduction of backbone of solutions of combinatorial optimizations.Coding continues variables into binary and denoting the same parts of solutions using binary bits with the same values,we may optimize continues problems by NTEO.Moreover,NTEO does not fix the mutation mech- anism of solutions, so it may be combined with others various technologies and has broad applicability.The experiments show that NTEO has better searching performance.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第27期91-94,107,共5页 Computer Engineering and Applications
关键词 种群多样性 网络拓扑进化 解的backbone 极值优化 diversity of population network topology evolving backbone of solution, extremal optimization
  • 相关文献

参考文献29

  • 1van den Berghf F,Engelbrecht A P.A cooperative approach to particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):1-15.
  • 2巩敦卫,孙晓燕.变搜索区域多种群遗传算法[J].控制理论与应用,2006,23(2):256-260. 被引量:28
  • 3Shi Y,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceeding of Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1945-1949.
  • 4Zheng Yong-ling,Ma Long-hua,Zhang Li-yan,et al.On the convergence analysis and parameter selection in particle swarm optimization[C]//International Conference on Machine Learning and Cybernetics,2003,3 (2/5):1802-1807.
  • 5刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105. 被引量:37
  • 6Lovbjerg M,Krink T.Extending particle swarm optimizers with self-organized critically[C]//Proceeding of the IEEE Int'l Conf on Evolutionary Computation.Honolulu:IEEE Inc,2002:1588-1593.
  • 7Kazemi BAL,Mohan CK.Multi-phase generalization of the particle swarm optimization algorithm[C]//Proc of the IEEE Int'l Conf on Evolutionary Computation.Honolulu:IEEE Inc,2002:489-494.
  • 8赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 9周永华,毛宗源.求解约束优化问题的分组比较遗传算法[J].华南理工大学学报(自然科学版),2003,31(2):38-43. 被引量:12
  • 10Zhang WJ,Xie XF.DEPSO:hybrid particle swarm with differential evolution operator[C]//Proc of the IEEE Int'l Conf on Systems,Man and Cybernetics.Washington:IEEE Inc,2003:3816-3821.

二级参考文献47

  • 1孟庆春,纪洪波,董浩.带有对称编码的基因算法中的优良个体成员选取和保存技术[J].计算机研究与发展,1997,34(S1):35-38. 被引量:2
  • 2恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 3周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 4周爱民 康立山 演化解.求解多目标优化问题一种新解定义[J].计算机学报,.
  • 5覃俊.一种新的求解tsp问题的遗传算法[J].中南民族大学学报自科版,1999,.
  • 6郭涛.[D].武汉大学,2000.
  • 7Rowlins G. ed.. Foundations of Genetic Algorithm. Los Altos: Morgan Kanfmann, 1991.
  • 8Powll D. , Tong S. , Skolnik M.. Domain independent machine for design optimization. In: Proceedings of the AAAI-90,George Mason University, USA, 1989, 151-159.
  • 9Cho S. B.. Combining modular neural networks developed by evolutionary algorithm. In: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, 1997, 647-650.
  • 10Zhao Q. F. , Arlo, Study on Co-evolutionary Learning of Neural Networks. Heidelberg: Springer-Verlag, 1997.

共引文献350

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部