期刊文献+

自适应分区段混合粒子群优化算法

Adaptive Muli-sections Hybrid Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 该算法先利用Christos贪心算法将整个搜索区域进行自适应分区段,在每一区段内搜索出最优位置,然后将各区段的最优位置组成一新微粒群,继续搜索全局最优位置。而在每个区段中,又将模拟退火算法引入到粒子群优化(PSO)之中,通过Boltzmann机制选择每一区段中局部极值,使新算法在不同阶段兼顾对多样性和收敛速度的不同要求。与其他混合PSO算法相比,仿真实验表明,新算法具有较高的解精度,能较好地解决过早收敛问题。 The algorithm divided first the whole searching region into muli - sections adaptively according to the greed algorithm of Christos, and searched the best position of each section. Then a new swarm was consisted of the best position of each section, and continued to search the best position of the global situation. In every section, it introduced the Simulated Annealing algorithm into Particle Swarm Optimization ( PSO), and made the new algorithm consider the different request between diversity and convergence by using the mechanism of Boltzmann to select the local extremum of each section. Compared with other hybrid PSO algorithms, the simulation ex poriments indicated that the new algorithm had higher accuracy and could avoid effectively premature problem.
出处 《微计算机应用》 2007年第10期1018-1023,共6页 Microcomputer Applications
基金 国家自然科学基金资助项目(60673062) 广东省自然科学基金资助项目(06025686) 广东省科技计划资助项目(2005B10101048 2006B11201003)
关键词 模拟退火 局部极值 粒子群 Simulated Annealing, local extremum, Particle Swarm Optimization
  • 相关文献

参考文献6

二级参考文献33

  • 1丁海军,陈佑健.蚁群算法的现状与研究进展[J].河海大学常州分校学报,2005,19(1):5-9. 被引量:12
  • 2陈国初,俞金寿.增强型微粒群优化算法及其在软测量中的应用[J].控制与决策,2005,20(4):377-381. 被引量:31
  • 3陈国初,俞金寿.微粒群优化算法[J].信息与控制,2005,34(3):318-324. 被引量:59
  • 4Murray B H, Moore A. Sizing the internet[Z]. A White Paper:Cyveillance, Inc. 2000.
  • 5Lawrence S, Giles L. Accessibility and distribution of information on the Web[J]. Nature . 1999, 400(8):107-109.
  • 6Brewington B E, Cybenko G. How dynamic is the Web[C]? In:Proc of the 9th International World Wide Web Conference.2000.
  • 7Ester M, Grob M, Kriegel H. Focused Web crawling: a generic framwork for specifying the user interest and for adaptive crawling stratrgies[C]. In: Proc of the International Conference on Very Large Database (VLDB′ 01 ), 2001.
  • 8Bra D P, Houben G, Kornatzky et al. Information retrieval in distributed hypertexts[C]. In: Proc of the 4th RIAO Conference, 1994,481-491.
  • 9Hersovici M, Heydon A, Mitzenmacher M, Najork Y S, Pelleg D, Shtalhan M, Ur S. The shark-search algorithm-An application: Tailored Web site mapping[C]. In: Proc of the 7th International World-Wide Web Conference, 1998.
  • 10Aggarwal C, AI-Garawi F, Yu S P. Intelligent crawling on the world wide Web with arbitrary predicates[C]. In: Proc of the 10th International World Wide Web Conference,2001.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部