期刊文献+

用于求解多目标优化问题的克隆选择算法 被引量:8

Conal selection algorithm for multi-objective optimization problems
在线阅读 下载PDF
导出
摘要 提出一种用于求解多目标优化问题的新算法,将抗体群中的抗体分为支配抗体和非支配抗体代替传统算法中对所有个体分配适应度值,以适应多目标优化问题存在一系列无法相互比较的Pareto-最优解的特点;对非支配抗体进行选择,有利于算法向着理想Pareto-前端搜索,而且加快了收敛速度;克隆操作实现了全局择优,有利于得到分布较广的Pareto-前端;采用非一致性变异操作以提高算法的局部搜索能力,有利于所得解的多样性.与已有算法相比,新算法所得的最优解分布最广,很大程度上支配着其他算法得到的最优解,评价指标S降低到了3%以下. A new algorithm for multi objective optimization problems is proposed. The antibodies in the antibody population are divided into dominated ones and non-dominated ones, which is suitable for the characteristic that one multi objective optimization problem has a series Pareto-optimal solutions. Selecting of the non-dominated antibodies guarantees the convergence to the true Pareto front and the convergence speed. The clonal operation implements the searching for optimal solutions in the global region and is available for getting a widely spread Pareto front. Adopting the nonuniform mutation operation improves the searching for optimal solutions in the local region and assures the diversity of the solutions. Compared with the existing algorithms, simulation results show that the solutions obtained by the new algorithm are most widely spread, dominate those gained by the other algorithms to some extent and depress the metric S to less than 3 %.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第5期716-721,共6页 Journal of Xidian University
基金 国家科学基金重点项目资助(60133010 60372045) 国家"973"子项目资助(2001CB309403 2006CB705700) 教育部重点项目资助(02073)
关键词 克隆选择 多目标优化 非一致性变异 性能评价 clonal selection multi-objective optimization non uniform mutation performance metrics
  • 相关文献

参考文献9

  • 1Schaffer J D. Multiple Objective Optimization with Vector Ecaluated Genetic Algorithms[D]. Nashville: Vanderbilt University, 1984.
  • 2Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generation[C]//Proceedings of the 5th International conference on Genetic Algorithms. San Mateo: Morgan Kaufmann, 1993: 416-423.
  • 3Srinivas N, Deb K. Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 4Ishibuchi H, Murata T. A Multiobjective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling [J]. IEEE Trans on System, Man and Cybernetics, 1998, 28(3) : 392-403.
  • 5Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: a Comparative Case Study and the Strength Pareto Approach[J]. IEEE Trans on Evolutionary Computation. 1999, 3(4): 257-271.
  • 6Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Computation. 2002, 6(2): 182-197.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Inst. Technology (ETH), 2001.
  • 8Jiao Licheng, Gong M G, Shang R H, et al. Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization[C]//EMO'05, Berlin: Springer-Verlag, 2005:474-489.
  • 9Zitzler E, Deb K, Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2):173-195.

同被引文献63

  • 1赵恒,杨万海,张高煜.模糊K-Harmonic Means聚类算法[J].西安电子科技大学学报,2005,32(4):603-606. 被引量:6
  • 2于滨,杨忠振,程春田,左志.公交线路发车频率优化的双层规划模型及其解法[J].吉林大学学报(工学版),2006,36(5):664-668. 被引量:24
  • 3曹亦文,巨永锋,陈锋.城市公交车发车频率优化模型[J].安徽大学学报(自然科学版),2007,31(2):29-32. 被引量:9
  • 4Michalewicz Z. Genetic Algorithm +Data Structure = Evolution Programs [M]. Berlin Heidelberg: Springer- Verlag, 1996.
  • 5Dasgupta D, Forrest S. Artificial Immune Systems in Industrial Applications[C]//IPMM'99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu: IEEE press, 1999: 257-267.
  • 6Gong Maoguo, Jiao Licheng, Du Haifeng, et al. Multiobjective Immune Algorithm with Nondominated Neighbor-based Selection[J]. Evolutionary Computation, 2008, 16(2) : 225-255.
  • 7De Castro L N, Von Zuben F J. Learning and Optimization Using the Clonal Selection Principle[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 8Kim J, Bentley P J. Towards an Artificial Immune System for Network Intrusion Detection: an Investigation of Dynamic Clonal Selection[C]//Proceedings of Congress on Evolutionary Computation. Hawaii: IEEE Press, 2002: 1015-1020.
  • 9Larranaga P, Kuijpers C M H, Murga R H, et, al. Genetic Algorithms for the Traveling Salesman Problem: a Review of Representations and Operators[J]. Artificial Intelligence Review, 1999, 13(2): 129-170.
  • 10Homaifar A, Guan S. A New Approach on the Traveling Salesman Problem by Genetic Algorithm[C]//Proceedings of the 5^th International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmann, 1993: 460-466.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部