期刊文献+

结合Hough变换与测地线轮廓模型的MR图像左心室自动分割 被引量:3

Automatic Segmentation of the Epicardium and Endocardium from MR Image Based on Hough Transform and Geodesic Active Contour Model
在线阅读 下载PDF
导出
摘要 通过对MR图像左心室分割中各种主流方法的分析,提出一种自动分割MR图像左心室内外轮廓的算法.利用短轴图像上左心室心肌内外轮廓近似圆形的先验形状知识,先用Hough变换自动定位左心室的初始轮廓,然后在测地线轮廓模型基础上,结合K均值聚类提供的区域信息及心肌的生理结构约束对左心室的内外轮廓同时进行自动分割.实验结果表明,该算法能够有效地分割左心室内外轮廓. We propose an approach to segment the epicardium and endocardium in cardiac image automatically. Based on the knowledge on the circle-like shape of epicardium and endocardium, we first use Hough transform to detect circles for initial contours of the left ventricle. Based on the geodesic active contour model by integrating K-means clustering to provide regional information and the anatomical constraints, we then segment both the epicardium and endocardium automatically, from the initial contour detected by Hough transform. Experimental results demonstrate the effectiveness of our approach.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2007年第10期1292-1297,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 江苏省自然科学基金(BK2006704-2) 香港特区政府研究资助局资助项目(CUHK/4180/01E CUHK1/00C)
关键词 MR图像分割 K均值 HOUGH变换 测地线轮廓模型 左心室 MR image segmentation K-means Hough transform geodesic active contour model leftventricle
  • 相关文献

参考文献11

  • 1Paragios N.A variational approach for the segmentation of the left ventricle in MR cardiac image analysis[J].Computer Vision,2002,50(3):345-362
  • 2Zeng X,Staib L,Schukz R,et al.Volumetric layer segmentation using coupled surfaces propagation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Santa Barbara,1998:708-715
  • 3Zhu S,Yuille A.Region competition:unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):884-900
  • 4周则明,陈强,王平安,夏德深.结合统计模型和曲线演化的左心室MRI图像分割[J].模式识别与人工智能,2006,19(4):509-514. 被引量:3
  • 5Figueiredo M A T,Jain A K.Unsupervised learning of finite mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381-396
  • 6Han Joon H,Hirota Kaoru,Kovácz Szilvester,et al.Fuzzy Hough transform[J].Pattern Recognition Letters,1994,15(7):649-658
  • 7Paragios N.A variational approach for the segmentation of the left ventricle in cardiac images[C]//Proceedings of IEEE Workshop on Variational and Level Set Methods,Vancouver,2001:153-160
  • 8Caselles V,Kimmel R,Sapiro G.Geodesic active contours[C]//Proceedings of IEEE International Conference on Computer Vision,Boston,1995:694-699
  • 9Kichenassamy S,Kumar A,Olver P,et al.Gradient flows and geometric active contour models[C]//Proceedings of IEEE International Conference on Computer Vision,Boston,1995:810-815
  • 10Osher S,Sethian J A.Fronts propagating with curvature dependent speed:algorithms based on the Hamilton-Jacobi formulation[J].Computational Physics,1988,79(1):12-49

二级参考文献36

  • 1Witkin K.A., Terzopoulos D. Snake: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321~331
  • 2Osher S., Sethian J.A. Fronts propagation with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988, 79(1): 12~49
  • 3Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 4Scholkopf B., Simard P., Smola A., Vapnik V. Prior knowledge in support vector kernels. In: Proceedings of the Neural Information Processing Systems, Denver, Colorado, United States, 1997, 640~646
  • 5Scholkopf B., Burges C., Vapnik V. Incorporating invariances in support vector learning machines. In: Proceedings of the Artificial Neural Networks, Berlin, 1996, 47~52
  • 6Arbib M.A. The Handbook of Brain Theory and Neural Networks. Cambridge, MA: MIT Press, 1995
  • 7Roobaert D., van Hulle M.M. View-based 3D object recognition with support vector machines. In: Proceedings of the IEEE Neural Networks for Signal Processing Workshop, Wisconsin, USA, 1999, 23~25
  • 8Xiao Rong,Wang Ji-Cheng,Zhang Fa-Yan. An approach to incremental SVM learning algorithm. In: Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence, Vancouver, British Columbia, Canada, 2000, 13~15
  • 9Cauwenberghs G., Poggio T. Incremental and decremental support vector machine learning. In: Proceedings of the Neural Information Processing Systems 13 (NIPS). Denver, CO., 2000, 409~415
  • 10Malladi R., Sethian J.A., Vemuri B.C. Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1995, 17(2): 158~175

共引文献10

同被引文献60

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部