期刊文献+

基于阴影特征和Adaboost的前向车辆检测系统 被引量:19

Forward vehicle detection based on shadow features and adaboost
原文传递
导出
摘要 为了解决汽车安全辅助驾驶系统中的前向车辆检测问题,提出了一种基于单目视觉的在线前向车辆检测系统。通过检测车底阴影特征来生成车辆假设,分别提出了自适应路面阈值方法和阴影区域融合方法以解决路面区域灰度变化和阴影边缘变形问题;使用基于梯度特征的adaboost方法来验证车辆假设;最后使用Kalman滤波对检测到的目标进行跟踪以改善系统性能。使用道路实拍的图像序列对系统进行了测试。结果表明,该系统能够在实时条件下有效检测前方车辆。 A single camera based on road forward vehicle detection system was developed to detect vehicles in front of the driver in a driver assistance system to improve vehicle safety. The shadows underneath vehicles are detected to generate vehicle hypotheses. An adaptive road threshold method and a dark areas merge approach are used to resolve the grayscale variation on the road and the distortion of the shadow border. A gradient based adaboost method is used to verify the hypotheses. Kalman filters are then used to track objects to improve system performance. The system was tested with series of images taken on roads. The results show that the system can effectively detect vehicles in front of the driver on real time.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1713-1716,共4页 Journal of Tsinghua University(Science and Technology)
基金 清华-OMRON合作项目(0506J52)
关键词 信息处理(信息加工) 车辆检测 阴影特征 ADABOOST information processing vehicle detection shadow feature adaboost
  • 相关文献

参考文献8

  • 1Sun Z, Bebis G, Miller R. On-road vehicle detection: A review [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2006, 28(5) : 694 - 711.
  • 2Mori H, Charkai N. Shadow and rhythm as sign patterns of obstacle detection [C]// Proc IEEE Int'1 Syrup Industrial Electronics. Budapest: IEEE Press, 1993:271 - 277.
  • 3Tzomakas C, Seelen W. Vehicle detection in traffic scenes using shadows, Internal Report 98-06 [R]. Bochum, Germany: Institut for Neuroinformatik, Ruht-Universitat Bochum, 1998.
  • 4Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. J Computer & System Sciences, 1997, 55(1): 119 - 139.
  • 5Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C] // Proc IEEE Conf Computer Vision & Pattern Recognition. Kauai, HI, USA: IEEE Press, 2001 : I 511 - 518.
  • 6Milos S. Real time object detection in images based on an adaboost machine learning approach and a small training set [C] // Proc 12th Intl Workshop on Systems, Signals & Image Processing. Chalkida, Greece : Inderscience Enterprises Ltd, 2005: 117- 122.
  • 7Intel Corporation. Open source computer vision library [EB/OL]. [2006-8-2]. http: //www. intel. com/technology/computing/opencv/index. htm.
  • 8Welch G, Bishop G. An introduction to the Kalman filter [EB/OL]. [-2006-8-2]. http: //www. cs. unc. edu/-welch/kalman/kalmanIntro. html.

同被引文献141

引证文献19

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部