期刊文献+

一种基于相似度的新型粒子群算法 被引量:19

A new particle swarm optimization algorithm based on similarity
在线阅读 下载PDF
导出
摘要 分析了基本粒子群算法(PSO)全局搜索能力与收敛速度的矛盾,提出了粒子群相似度的概念.根据每个粒子与全局最优粒子的不同相似度,对基本PSO算法的惯性权重进行动态调整.同时提出一种根据相似度计算聚集度的方法,并根据聚集度的大小随机地对粒子重新赋值,控制粒子群的多样性,提高了全局搜索能力.典型优化问题的实例仿真验证了该算法的有效性. The contradiction of the global exploration and convergence speed of particle swarm optimization(PSO) algorithm is analyzed. A new PSO algorithm is proposed, in which the inertia weight of every particle will be changed dynamically with the similarity between the particle and the current optimal position.And based on similarity, a method of collection calculation is proposed, which is used to randomly initialize the position of the particle, control the diversification of PSO, and improve the ability of global exploration. Experiments on benchmark functions show the effectiveness of the new algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2007年第10期1155-1159,共5页 Control and Decision
关键词 粒子群算法 全局最优性 相似度 聚集度 Particle swarm optimization algorithm Global optimality Similarity Collection
  • 相关文献

参考文献2

二级参考文献23

  • 1R.C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. The 6th Int'l Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 2J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. In:Proc. IEEE Int'l Conf. Neural Networks. Piscataway, NJ:IEEE Service Center, 1995. 1942~1948.
  • 3M. Clerc. TRIBES-A parameter free particle swarm optimizer.http://clerc.maurice.free. fr/PSO, 2002-08-10/2003-10-08.
  • 4Hu Xiaohui, R. C. Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems. IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA,2002.
  • 5A. Salman. Discrete particle swarm optimization for heterogeneous task assignment problem. World Multiconference on Systemics,Cybernetics and Informatics(SCI 2001), Orlando, USA, 2001.
  • 6M. Clerc. Discrete particle swarm optimization: A fuzzy combinatorial black box. http: // clerc. maurice. free. fr/PSO/Fuzzy_Discrete_PSO/Fuzzy_DPSO. htm, 2000-04-01/2003-10-08.
  • 7T. Krink, J. S. Vesterstrom, J. Riget. Particle swarm optimization with spatial particle extension. The IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 2002.
  • 8Hirotaka, Yoshida, Kenichi. A particle swarm optimization for reactive power and voltage, control considering voltage stability.IEEE Int'l Conf. Intelligent System Applications to Power Systems, Rio de Janeiro, 1999.
  • 9M.S. Voss, Xin Feng. Arma model selection using particle swarm optimization and AIC criteria. The 15th Triennial World Congress, Barcelona, Spain, 2002.
  • 10K.E. Parsopoulos, M. N. Vrahatis. Particle swarm optimization method in multiobjective problems. The 2002 ACM Symposium on Applied Computing(SAC2002), Madrid, Spain, 2002.

共引文献51

同被引文献196

引证文献19

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部