期刊文献+

VaR与ES的非参数估计的统计分析

Statistical Analysis Based on Non-parametric Estimation of VaR and ES
在线阅读 下载PDF
导出
摘要 利用VaR与ES最新的非参数估计方法,不依赖于分布假设,对上证指数做实证分析,并对N天的VaR的计算方法进行研究。研究结果表明,在样本容量较大的情况下,VaR与ES的非参数估计方法有较好的效果;曲线回归方法计算N天的VaR的效果明显优于正态假设下计算的效果。 By using the last nonparametric estimation of VaR and ES, not depending on any distribution, analyze empirically the risk of Shanghai stocks index, explore the method of computing N-day VaR. The results of the exploration indicate that under more samples, there are better results by using nonparametric estimation of VaR and ES. the method of computing N-day VaR by curvilinear regression has better result than that of computing under the normal assumption.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期111-115,共5页 Journal of Chongqing University
基金 国家自然科学基金资助项目(10161004) 广西自然科学基金资助项目(04047033) 广西区教育厅科研资助项目(200607LX077)
关键词 风险在值 期望损失 非参数估计 value at risk expected shortfall nonparametric estimation
  • 相关文献

参考文献6

  • 1ACERBI C, TASCHE D. On the coherence of expected shortfall[ J ]. Journal of Banking and Finance, 2002 (26) : 1487-1503.
  • 2ACERBI C, TASCHE D. Expected shortfall: a natural coherent alternative to value at risk[J]. Economic Notes by Banca dei Paschi di Siena SpA, 2002, 31(2) :379-388.
  • 3CHEN S X,TANG C Y. Nonparametric inference of value at risk for dependent financial returns [ J ]. Journal of Financial Econometrics, 2005, 3 (2) :227-255.
  • 4SCAILLET O. Nonparametric estimation and sensitivity analysis of expected shortfall [ J ]. Mathematical Finance, 2004, 14(1):115-129.
  • 5YANG S C, YU K N. Nonparametric estimation of expected shortfall [ R ]. Workshop on Quantile Regression, LMS Method and Robust Statistics in the 21^st Century, International Centre for Mathematical Sciences, Edinburgh, Scotland, UK, June 2006.
  • 6HULL J. Options, futures, and other derivatives [ M ]. Beijing:Tsinghua University Press,2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部