期刊文献+

基于磁性纳米粒子固定技术的漆酶传感器用于垃圾堆肥中邻苯二酚的检测 被引量:17

Catechol Biosensor Based on Immobilizing Laccase to Modified Core-shell Magnetic Nanoparticles Supported on Carbon Paste Electrode
在线阅读 下载PDF
导出
摘要 以邻苯二酚为检测目标,研究了一种基于核/壳磁性纳米粒子固定漆酶的邻苯二酚生物传感器制备方法及其在城市生活垃圾堆肥中的应用.制备Fe3O4磁性纳米颗粒,使用正硅酸乙酯(TEOS)和氨丙基三甲氧基硅烷(APTMS)将其功能化并利用戊二醛将漆酶共价固定,借助磁场吸附在磁性碳糊电极上,检测邻苯二酚.固定在电极表面的漆酶保持了很好的活性.该生物传感器的检测线性范围为7.5×107~2.75×10-4mol/L,检测下限达到7.5×10^-7 mol/L,达到稳态电流95%所需时间大概为70 s.将该传感器检测堆肥浸出液中酚的含量的结果与高效液相色谱法对比,两者非常接近. A catechol blosensor was developed and used to analyze compost extracts based on the immobilization of laccase on the surface of modified magnetic core-shall (Fe3O4-SiO2) nanoparticles. Laccase was convalently immobilized on the magnetic nanoparticles by glutaraldehyde, which were modified with amino groups on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode with the help of a permanent magnet to determine catechol. The immobilization matrix provided a good microenvironment for retaining the bioactivity of laccase. The linear range for catechol determination was 7.5 × 10^-7 ~ 2.75 x 10-4 mol/L, with a detection limit of 7.5 × 10^-7 mol/L. The detection current reached 95% of the steady-state current within about 70 s. Catechol concentration in compost extracts were determined by laccase biosensor and HPLC, with approximately the same result.
出处 《环境科学》 EI CAS CSCD 北大核心 2007年第10期2320-2325,共6页 Environmental Science
基金 高等学校博士学科点专项科研基金项目(20020532017) 国家高技术研究发展计划(863)项目(2004AA649370) 国家重点基础研究发展规划(973)项目(2005CB724203) 高等学校优秀青年教师教学科研奖励计划项目
关键词 Fe3O4磁性纳米颗粒 漆酶 邻苯二酚 堆肥 Fe3O4 magnetic nanoparticles laccase catechol compost
  • 相关文献

参考文献22

  • 1Poerschmann J,Zhang Z,Kopinke F D,et ad.Solid phase microextraction for determining the distribution of chemicals in aqueous matrices[J].Anal Chem,1997,69(4):597-600.
  • 2Graovac M,Todorovic M,Trtanj M I,et al.Broadly applicable polysiloxane-based chiral stationary phase for high-performance liquid chromatography and supercritical fluid chromatography[ J ].J Chrom A,1995,705(2):313-317.
  • 3Chapuis-Lardy L,Contour-Ansel D,Bernhard-Reversat F.High-performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids (Congo)[ J ].Plant Science,2002,163(2):217-222.
  • 4Vianello F,Ragusa S,Cambria M T,et al.A high sensitivity amperometric biosensor using laccase as biorecognition element[J].Biosens Bioelectron,2006,21(11):2155-2160.
  • 5Vianello F,Cambria A,Ragusa S,et al.A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element[J].Biosens Bioelectron,2004,20(2):315-321.
  • 6汤琳,曾光明,黄国和,牛承岗.免疫传感器用于环境中痕量有害物质检测的研究进展[J].环境科学,2004,25(4):170-176. 被引量:30
  • 7Carralero V,Mena M L,Gonzalez-Cortés A,et al.Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Tefion electrode modified with gold nanoparticles[J].Biosens Bioelectron,2006,22(S):30-736.
  • 8Liu Y,Qu X H,Guo H W,et al.Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite[ J ].Biosens Bioelectron,2006,21(12):219S-2201.
  • 9Li J,Chia L S,Gob N K,et al.Silica sol-gel immobilized amperometric biosensor for the determination of phenolic compounds[J].Anal Chim Acta,1998,362:203-211.
  • 10Peralta-Zamora P,Pereira C M,Tiburtius E R L,et al.Decolorization of reactive dyes by immobilized laccase[J].Appl Cata B:Env,2003,42(2):131-144.

二级参考文献41

  • 1[2]Dankwardt Andrea. Immunochemical assays in pesticide analysis. In: Robert A. Meyers. Encyclopedia of Analytical Chemistry[C]. Chichester: John Wiley & Sons Ltd, 2000, 1~27.
  • 2[3]Kroiger Silke, Setford Steven J, Turner Anthony P F. Immunosensor for 2,4-Dichlorophenoxyacetic Acid in Aqueous/Organic Solvent Soil Extracts[J]. Anal. Chem., 1998, 70: 5047~5053.
  • 3[4]Mastichiadis Christos, Kakabakos Sotirios E, Christofidis Ion, Michael A Koupparis, Caroline Willetts, Konstantinos Misiakos. Simultaneous determination of pesticides using a four-band disposable optical capillary immunosensor[J]. Anal. Chem., 2002, 74: 6064~6072.
  • 4[5]Pribyl J, Hepel M, Halámek J, Skládal P. Development of piezoelectric immunosensors for competitive and direct determination of atrazine[J]. Sens. Actuat. B, 2003, 91: 333~341.
  • 5[6]Ngeh-Ngwainbi J, Foley P H, Kuan Shia S, Guilbault G G. Parathion antibodies on piezoelectric crystals[J]. J. Am. Chem. SOC., 1986, 108: 5444~5441.
  • 6[7]Penalva José, Puchades Rosa, Maquieirangel. Analytical properties of immunosensors working in organic media[J]. Anal. Chem., 1999, 71: 3862~3872.
  • 7[8]Green Tiffanee M, Charles Paul T, Anderson George P. Detection of 2,4,6-trinitrotoluene in seawater using a reversed-displacement immunosensor[J]. Anal. Biochem., 2002, 310: 36~41.
  • 8[9]Goldman Ellen R, Pazirandeh Mehran P, Charles Paul T, Balighian Eric D, Anderson George P. Selection of phage displayed peptides for the detection of 2,4,6-trinitrotoluene in seawater[J]. Anal. Chim. Acta, 2002, 457: 13~19.
  • 9[10]Abad Antonio, Moreno Maryá José, Montoya Angel. Development of monoclonal antibody-based immunoassays to the N-methylcarbamate pesticide carbofuran[J]. J. Agric. Food Chem., 1999, 47: 2475~2485.
  • 10[11]Fahnrich K A, Pravda M, Guilbault G G. Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes[J]. Biosens. Bioelectron., 2003, 18: 73~82.

共引文献29

同被引文献1123

引证文献17

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部