期刊文献+

Logitboost法与累积比数Logit模型在判别分析中的应用分析

Logitboost and Cumulative Odds Logit Model and Their Application in Discriminant Analysis
在线阅读 下载PDF
导出
摘要 目的:探讨Logitboost和累积比数Logit模型这两种方法应用于判别分析的优缺点。方法:简要介绍Logitboost和累积比数Logit模型的原理,并采用此两种方法分别对同一个实例进行判别分析。结果:两种方法的判别正确率均较高。Logitboost判别效果高于累积比数Logit模型判别。讨论:在迭代轮数适当的情况下,Logitboost判别正确率更高,受迭代次数影响较大;而累积比数Logit模型的稳定性较强。在对事件进行判别时,可根据数据资料的具体特点选用判别方法,也可将两种方法结合应用,取其判别效果较好者。 Objective: To compare Logitboost with Cumulative odds logit model, and discuss their characteristics when they are used in Discriminant analysis. Methods: The ultimate principle of Logitboost and Cumulative odds logit model will be introduced in this paper, and we will use the two methods to solve the same problem. Results Logitboost's effect is better than Cumulative odds logit model. Conclusion. The effect of Logitboost would be better if a appropriate iteration is given, in other words, Logitboost is affected by iteration in large measure. But Cumulative odds logit model is stable. We should choose the better according the data.
出处 《数理医药学杂志》 2007年第5期592-594,共3页 Journal of Mathematical Medicine
关键词 累积比数Logit模型 判别分析 Logitboost 睡眠质量 cumulative odds Logit model discriminant analysis Logitboost sleep quality
  • 相关文献

参考文献3

  • 1Schapire RE.The strength of weak learnability.Machine Learning,1990,5(2):197-227.
  • 2富春枫,荀鹏程,赵杨,陈峰.logitboost及其在判别分析中的应用[J].中国卫生统计,2006,23(2):98-100. 被引量:11
  • 3Ian H.Witten,Eibe Frank,著.数据挖掘实用机器学习技术.北京:机械工业出版社,2006,245-249.

二级参考文献11

  • 1Schapire RE.The Boosting Approach to Machine Learning An Overview.MSRI Workshop on Nonlinear Estimation and Classification,2002.
  • 2Schapire RE.The strength of weak learnability.Machine Learning,1990,5(2):197-227.
  • 3Freund Y,Schapire RE.A decision-theoretic generalization of on-line learning and an application to boosting.Journal of Computer and System Sciences,1997,55(1):119-139.
  • 4Friedman JH,Trevor,Robert Tibshirani.Additive logistic regression:A statistical view of boosting.The Annals of Statistics,2000,38(2):337-374.
  • 5King RD.The Stalog databases.fttp.strath.ac.uk(130.159.248.24).
  • 6Quinlan JR.C4.5:Programs for Machine Learning.Morgan Kaufmann,1993.
  • 7Drucker H,Schapire R,Simard P.Boosting performance in neural networks.International Journal of Pattern Recognition and Artificial Intelligence,1993,7(4):705-719.
  • 8Dietterich TG.An experimental comparison of three methods for constructing ensembles of decision trees:Bagging,boosting,and randomization.Machine Learning,2000,40(2):139-158.
  • 9Iyer RD,Lewis DD,Schapire RE,et al.Boosting for document routing.In Proceedings of the Ninth International Conference on Information and Knowledge Management,2000.
  • 10Moreno PJ,Logan B,Bhiksha Raj.A boosting approach for confidence scoring.In Proceedings of the 7th European Conference on Speech Communication and Technology,2001.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部