期刊文献+

带有二次非线性项的耦合薛定谔方程组的精确解 被引量:3

Exact Solutions to a Coupled Schrdinger Equations with a Quadratic Nonlinearity
在线阅读 下载PDF
导出
摘要 通过几个变换,借助于多个辅助方程新的精确解,导出了具有二次非线性项的耦合薛定谔方程组的一些精确解,包括三角函数解,钟状、扭状孤波解以及Weierstrass椭圆函数解. Using several different function transformations, and then by using various solutions of some new differential sub-equations, many new exact solutions of the coupled schrodinger equations with a quadratic nonlinearity are explicitly obtained, which including triangle functions, the king, bell solitary wave envelope and Weierstrass elliptic function.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期27-32,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金资助项目(2006110002) 河南科技大学科研基金资助项目(2006ZY0012006ZY011) 山东交通学院校科研基金资助项目
关键词 具有二次非线性项的耦合薛定谔方程组 变换 辅助方程 精确解 The coupled schrodinger equations with a quadratic nonlinearity transformation sub-equations the exact solutions
  • 相关文献

参考文献15

  • 1Ablowitz M J,Clarkson P A,Solitons,Nonlinear Evolution Equations and inverse Scattering Transform[M].Cambridge:Cambridge Univ.Press,1991.
  • 2Liu S K,Fu Z T,Liu S D,Zhao Q.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys Lett A,2001,289(10):69-74.
  • 3Wang M L.Solitary wave solutions for variant Bossinesq equations[J].Phys Lett A,1995,199(3):169-172.
  • 4Parks E J,Duffy B R.An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J].Comput Phys Commun,1996,98(3):288-300.
  • 5Fan E G.Extended tanch-function method and its applications to nonlinear equations[J].phys Lett A,2000,277(4):212-218.
  • 6Wang M L,Zhou Y B.The Periodic wave solutions for the Klein-Gordon-Schrodinger equations[J].Phys Lett A,2003,318(1):84-92.
  • 7Wang M L,Li X Z.Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation[J].Chaos,Solitons & Fractals,2005,24(5):1257-1268.
  • 8Hasegawa A,Tappert F D.Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers.Ⅰ.Anomalous dispersion[J].Appl Phys Lett,1973,23:142-144.
  • 9Hasegawa A,Tappert F D.Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers.Ⅱ.Normal Dispersion[J].Appl Phys Lett,1973,23:171-172.
  • 10Mollenouer L F.Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers[J].Phys Rev Lett,1980,45:1095-1098.

二级参考文献16

  • 1Wang Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett, 1995;A199:169-172.
  • 2Zhang Jin-Liang, Wang Yue-Ming, Wang Ming-Liang, Fang Zong-De. New application of the homogeneous balance principle[J]. Chinese Physics, 2003;12:245-250.
  • 3Zhou Yu-bin, Wang Ming-liang, Wang Yue-ming. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys Lett, 2003;A308:31-36.
  • 4Zhang Jin-Liang, Ren Dong-Feng, Wang Ming-Liang et al. The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation[J]. Chin Phys, 2003;12:825-830.
  • 5Khuri S A. A complex tanh-function method applied to nonlinear equations of Schrodinger type[J]. Chaos Solitons and Fractals, 2004;20:1037-1040.
  • 6Faddeev L P, Takhtajan L A. Formulation of Nonlinear NS Model, Hamiltonian Methods in The Theory of Solutions[M]. Berlin: Springer, 1987.
  • 7Zakharov V E. The Inverse Scattering Methods in Solutions[M]. Berlin: Springer, 1980.
  • 8Myrzakulov R, Bliev N K, Boyzyky A B. Reports NAS RKS, 1996.
  • 9Radha R, Lakshmanan M. Singularity structre analysis and bilinear form of a (2q-1)-dimensional nonlinear NLS equation[J]. Inverse Problem, 1994;10:L29-32.
  • 10Zhao X Q, Lu J F, Lu K Y. The infinite-dimensional lie algebraic and integrability of a nonlinear Schrodinger equation in (2+1) dimension[J]. J Nankai Univ, 2002;35:74-77.

共引文献17

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部